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Abstract
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completely disagree about which action should follow which signal. If there are at least
three states, this can be caused by only small differences in how information is inter-
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1 Introduction

We commonly encounter situations in which information is difficult to evaluate or inter-

pret. In such circumstances, we can observe people taking actions in line with opposing

hypothesis, despite having access to similar information. For example, a significant num-

ber of people refuse essential vaccinations despite the very strong evidence of their benefit

and despite the measurable increase in outbreaks of the related disease as a consequence of

this refusal.1 Experts, such a physicians, then often try to guide individuals’ views on how to

interpret and act on information.

In light of these observations, we analyze a general belief-updating and decision prob-

lem under the assumption that information processing is not always flawless but impeded

by inaccuracies or potentially even systematic mistakes. More specifically, we focus on when

and how decision makers can be better-off with access to less, less accurate, or even mis-

leading information. We do this by examining the potential role of a benevolent expert -

called the moderator - who has no superior access to information but who is possibly more

skilled at interpreting it. This moderator can manipulate or destroy information before it

reaches the decision maker. We see this as an approximation of situations where an expert

can influence which and how information is seen by an individual. For instance, physi-

cians often ‘interpret’ diagnostic tests for their patients. While they are unaware of the true

state of a patient’s health, they might have a better understanding of the accuracy of tests as

well as the ex-ante likelihood of a condition. In the same spirit, a CEO might be decisive in

whether a new product is launched, but managers responsible for market research and test-

ing can affect what and how the results are presented to the CEO. While it is well understood

that differences in preferences can generate incentives to transmit noisy and misleading in-

formation (e.g., Crawford and Sobel (1982), Green and Stokey (2007), Brocas and Carrillo

(2007), Kamenica and Gentzkow (2011), etc.), we are interested in examining to what extent

this can arise simply from a different understanding of the information environment.

We analyze a simple sender-receiver model that captures the fundamentals of informa-

tion processing: a decision maker (DM), who takes the role of the receiver, chooses an action

profile conditional on the results of an information experiment. The DM then observes a

signal from the experiment that provides information about the payoff relevant state of na-

ture, and subsequently implements the corresponding action. Before the signal is perceived

by the decision maker, however, it reaches a moderator, whose preferences are fully aligned

with the DM. The moderator, acting as a sender, can decide whether to forward the signal

truthfully, or apply a garbling, thereby reducing or altering the information content. This

decision is determined by a moderation policy that the moderator can commit to before the

1See, for instance, Poland and Jacobson (2001) and Larson et al. (2011) for an overview of factors shaping
public (dis-)trust in vaccine safety and efficacy, and their consequences for public health. Motta et al. (2018)
provides evidence for widespread misinformation and overconfidence regarding medical knowledge in the
general population in the U.S..
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DM determines their action profile. We further distinguish two cases to examine the role of

strategic/informational sophistication: (1) a setting where the decision maker is unaware of

any tampering by the moderator (naive) and (2), a setting where the DM takes into account

the moderation policy when choosing the action profile (sophisticated).

In our model, information processing can be imperfect in two ways: a decision maker

might hold inaccurate (biased) beliefs about the world and/or incorrectly assess the accu-

racy of information from the experiment (misperception). Both imperfections are motivated

by the psychological and experimental literature on beliefs and perception: while the former

captures concepts such as over- or underconfidence (Fischoff et al. (1977), Lichtenstein et al.

(1982), Moore and Healy (2008)) or motivated beliefs (Epley and Gilovich (2016)), the latter

broadly covers directional mistakes, such as confirmation bias (Bruner and Potter (1964),

Darley and Gross (1983), Rabin and Schrag (1999)) or one-sided updating to protect one’s

ego utility or self-image (Mobius et al. (2014), Eil and Rao (2011)), as well as simple errors.

Both perception issues can also arise from a coarse representation of the information en-

vironment (Mullainathan (2002), Jakobsen (2022)). Our model can thus be used to study a

wide variety of imperfections in information processing; from random inaccuracies to sys-

tematic mistakes.

Biased beliefs and misperception distort posteriors and shift choices away from the op-

timal ones. Both imperfections have a common channel: they cause non-convexities (in

beliefs) in the utility frontier, thus altering the value of information. Beyond this, biased

beliefs also affect the utility ranking of actions in the absence of any informative signals.

These consequences render interactions between moderator and DM effectively strategic

and allow a moderator to beneficially intervene in some cases. Nevertheless, the existence

of a superior choice does not imply that the moderator can induce it. The decision maker’s

choice behavior and signal perception constrain the influence of the moderator, and these

constraints markedly differ between naive and sophisticated types. Exploring the conse-

quences of these constraints is a key focus of the paper.

We characterize when a moderator can have a beneficial impact and what the optimal

moderation policy for each type looks like. We find that sophistication allows for the im-

plementation of beneficial (i.e., utility increasing) moderation policies in more cases but

interestingly, these policies might be less effective (i.e., less beneficial) than those for naive

decision makers. It is demonstrated that destroying all (relative) information between at

least some signals can be superior to a less aggressive garbling. And such moderation poli-

cies can be more beneficial for a naive than sophisticated decision maker, pointing to the

heterogeneous effects of sophistication. This does, however, require a more complex infor-

mation environment (non-binary signals) and/or heterogeneous prior beliefs.

As a key observation, we find that providing decision makers with more accurate infor-

mation might not always be the only, or even optimal way to counteract inaccuracies in

perception. For example, we demonstrate how in settings with more than three states, a de-
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cision maker who strictly underestimates the Blackwell informativeness of an experiment

might benefit from a further garbling of information. Intensifying a perception issue can

have a positive impact in more complex information environments.

We also examine a particularly interesting case where moderator and decision maker

completely disagree about which action should follow which signal. With complete disagree-

ment, we mean that a moderator believes an action a should follow one signal, and action b

another, with the decision maker holding the completely opposite view. Crucially, complete

disagreement occurs naturally in our setting, and not as a result of different preferences over

actions or a fundamentally different understanding of the information structure. We show

that in all but trivial cases, complete disagreement requires at least three states of nature

but can arise without any distortions and only small (≤) differences in prior beliefs. Using a

geometric approach, we fully characterize when such disagreement between DM and mod-

erator can occur and provide a method for verifying the possibility in a given setting. If there

is complete disagreement, beneficial moderation is always possible but might again be more

beneficial for a naive DM, particularly if the signal and choice environment is binary, but the

state-space more complex.

If a decision maker is naive, complete disagreement calls for a moderation policy that re-

verses the link between signals and posteriors, leaving the DM completely misinformed, and

yet better-off. What would look to an outside observer like malicious misinformation can

simply be based on (small) differences in how information is interpreted. If the information

environment is more complex, misinformation can occur even if interests are aligned and

decision makers act non-strategically. At the same time, this implies that while strategic and

informational sophistication can make a decision maker less vulnerable to manipulation by

adversarial information sources, it can also negatively limit the ability of a benevolent expert

to reduce the effects of biases and misunderstandings. In other words, raising individuals’

awareness of possible manipulations, and thus increasing their resilience to misinforma-

tion, can have negative side-effects.

For consistency and ease of interpretation, the analysis is phrased throughout to suggest

that the moderator is free of such biases and misperceptions. However, given a suitable ad-

justment to the perspective on Welfare, it can also be interpreted as a sender and receiver

holding heterogeneous views about the information environment, without taking any stand

as to the accuracy of each view. The result can be seen as highlighting instances were a DM is

more vulnerable to interference by a well-meaning but potentially destructive moderator. A

third interpretation relates to the interaction of different mistakes around information pro-

cessing, and highlights when the DM can be better off from suffering more severe percep-

tion issues. Specifically, if the moderator finds it optimal to destroy information, then a DM

would be better off if their information processing was subject to noise or distortions, such

as incorrectly recalling past information, or a tendency to dismiss certain types of signals, as

long as these distortions mimic a beneficial moderation policy.
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Taking a broader perspective, our results highlight the need for a comprehensive un-

derstanding of imperfections in information processing to improve decision-making. One-

sided and simplistic approaches that fail to reflect the complexity of the perception issues,

or of the information and choice environment can have unexpected consequences. Never-

theless, as we demonstrate in this paper, interventions can be feasible and useful.

2 Relevant literature

Blackwell (1951) formalizes when an information experiment is more informative than an-

other. Marschak and Miyasawa (1968) transfer these statistical ideas to the realm of eco-

nomics. The key finding is that no rational decision maker would choose to ‘garble’ their

information, i.e., voluntarily introduce noise into experiments. Having more information,

however, may not always be beneficial and can cause a disadvantage in strategic interac-

tions. For example, Hirshleifer (1971) highlights that public information may destroy mu-

tually beneficial insurance possibilities. Information avoidance has also been documented

in bargaining (Schelling (1956), Schelling (1960), Conrads and Irlenbusch (2013), Poulsen

and Roos (2010)), holdup problems (Tirole (1986), Rogerson (1992), Gul (2001)), and even

intra-personal games of behavioral decision maker (Carrillo and Mariotti (2000), Benabou

and Tirole (2002)). There is also an extensive literature on psychological reasons to avoid in-

formation (Kőszegi (2006), Golman et al. (2017)). In our setting, benefits from less accurate

information are not based on strategic or psychological considerations, but rely only on dif-

ferent interpretations of the information environment. Information is purely instrumental.

Numerous studies have suggested that people hold incorrect beliefs, where beliefs can

range from objective (economic) quantities to individual traits or prospects.2 For example,

Weinstein (1980) document unrealistically positive views for health and salaries. There is

also evidence for overconfidence in entrepreneurs (Landier and Thesmar (2009)), as well as

CEOs (Malmendier and Tate (2005)), who as a consequence are more likely to pursue risky

actions. Overconfidence may, however, not always have a negative impact, as shown the-

oretically, for instance in the context of job search problems (Dubra (2004)). Furthermore,

what may in empirical investigations appear as overconfidence - or more generally as some

form of mistake in the belief (-formation) - may (partially) be a result of the way beliefs are

elicited (Gigerenzer and Hoffrage (1995)) or the way the problem is presented (Gigerenzer

et al. (1988)). Benoit and Dubra (2011) highlight that data based on median comparisons,

e.g., that a majority of people view themselves as better than the median, does not imply

2While individuals tend be better able to asses everyday economic quantities such as the price of gas (An-
solabehere et al. (2013)), their beliefs are often incorrect even for quantities that are of direct importance to
them, with measurable impact on outcomes. In the labor market, for example, Spinnewijn (2015) documents
that 80% of job seekers underestimate the length of their unemployment spell, leading to too little search ef-
fort. Potter (2021) shows that job seekers overestimate their job-finding prospects by roughly 60% at the time
of job loss. For a recent review on expectation in the labor market, see Mueller and Spinnewijn (2022).
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they are overconfident. Instead, such beliefs are entirely consistent with Bayesian updat-

ing.3 This paper makes a similar contribution in this regard, showing that a a fully Bayesian

decision maker may update in completely opposite directions as a result of a (small) change

in prior beliefs.4 More generally, while there is debate regarding the source and existence

of systematic biases in beliefs, there at least seems to be significant evidence that decision

makers may not always hold accurate beliefs.

Perception biases have first been documented in the psychology literature, see, for ex-

ample, Bruner and Potter (1964), Fischoff et al. (1977) Lichtenstein et al. (1982), and Darley

and Gross (1983). The literature has explored many ways of modeling such biases, with dif-

ferent implications for welfare and learning. For example, distorted perception can deliver

a benefit in some settings (e.g., Steiner and Stewart (2016)) but may prove harmful in others

(Rabin and Schrag (1999)). More specifically, Rabin and Schrag (1999) show one-sided up-

dating due to confirmation bias can lead a decision maker to become fully convinced of a

wrong hypothesis. Evidence for such updating behavior includes Mobius et al. (2014) and Eil

and Rao (2011). Perception issues may also arise from how information is represented and

processed in the brain (Brocas (2012)). Consistent with arguments in the latter study, the

decision makers in our model have a fundamentally Bayesian approach to decision making,

but beliefs and perception can be subject to random or systematic inaccuracies.

This paper is closely related to recent theoretical work on persuasion, information de-

sign, and strategic communication more generally. While in most cases incentives to misin-

form arise from different preferences (Crawford and Sobel (1982)), we assume preferences

to be fully aligned between sender and receiver in order to remove strategic aspects, and

instead highlight the role of differences in the interpretation of information. This resembles

Green and Stokey (2007), who allow for differences in prior, but assume agents otherwise

agree on the information structure. Furthermore, our approach focuses on different types

of decision makers and includes the case where the sender can commit to an information

structure. As in Lipnowski and Mathevet (2018), we examine the role of a benevolent expert,

who controls the information flow. However, in our setting incentives to reduce informative-

ness of signals only arise from how information is used, not preferences over information as

such. This aspect more closely resembles Alonso and Câmara (2016), who study Bayesian

persuasion with heterogeneous priors, Tsakas and Tsakas (2021), who analyze the impact

of exogenous noise layered on top of the sender’s signal, as well as de Clippel and Zhang

(2022), who focus on non-Bayesian updating more generally. However, in our model the

sender cannot freely design potential signals but is constrained by the available informa-

3In response, lab experiments that document overconfidence and are robust to the critique in Benoit and
Dubra (2011) are reported in Burks et al. (2013), Benoit et al. (2015), and Charness et al. (2018).

4Interestingly, while the information provision experiments by Armantier et al. (2016) (consumer inflation ex-
pectations) and Coibion et al. (2018) (macroeconomic beliefs of firms) suggest that decision makers hold
incorrect beliefs, they also highlight that they tend to revise beliefs in a manner qualitatively consistent with
Bayesian updating. See Haaland et al. (2023) for a review of the relevant literature.
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tion experiment as well as the DMs view on it. This also distinguishes it from Brocas and

Carrillo (2007), where the sender can decide how much information to obtain. More impor-

tantly, we allow the sender and receiver to disagree over the experiment. As in Kamenica

and Gentzkow (2011), the sender has commitment power. This, however, only plays a role

for sophisticated decision makers.

3 Model

A decision maker (DM) inhabits a world which is characterized by one of a finite number

of possible states ≠. The relevant state is not known to the DM, who instead holds some

belief about which state applies. A belief is captured by µ 2 ¢(≠), with ¢(≠) the set of all

possible probability distributions over ≠. We interpret µ as a vector, where each entry µ!
corresponds to the probability the DM assigns a state !. We assume the DM believes all

states can occur with positive probability, meaning µ> 0.

The DM faces a simple decision problem: they must choose an action from a finite setA.

The DM’s payoff from an action a 2A depends on the state of the world and is represented

by a utility function u(a|!). To rule out trivial cases,A is assumed to contain at least two ac-

tions, and no actions that are payoff-equivalent or strictly dominant. To make their choice,

the DM does not have to solely rely on their initial (‘prior’) belief about the world. They

can perform an information experiment that might reveal additional information about

the state. Any such experiment yields a result or signal. The relevant aspect of the signal

is the probability with which it occurs in each state. We identify a signal by its probability

profile and treat it as a vector s = (s!)!2≠, where s! is the probability that s is observed in

state !. An information experiment X is characterized by its finite set of possible signals

SX . Analogous to Blackwell (1951), we can consider X a row-stochastic matrix of dimension

|≠|£ |SX |, where rows correspond to states, and columns to signals. An element x!,s of this

matrix gives the probability that signal s is observed in state !. Each row thus corresponds

to the probability distribution over signals for a given state. The space of all such matrices is

denoted by X.

The experiment allows the DM to condition choices on signals. Given some X 2 X, an

action profile a = (as)s2Sx is a vector of dimension |SX | that describes the choice after each

possible signal. As a convention, action ai in the action profile a refers to the action taken

after signal si . The objective of a DM with access to an experiment X is to choose an action

profile that maximizes (von Neumann-Morgenstern) expected utility:

max
a2A|SX |

E
h
U

°
a|µ(s)

¢ØØµ
i

, (1)

where U
°
a|µ(s)

¢
= E

£
u(a|!)|µ(s)

§
and µ(s) denotes the posterior belief after observing s.
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Distortions, Biases, and Belief updating:

The DM might not be fully aware of the true signal structure of an experiment and may

instead hold a distorted view. At this point, we remain agnostic about where this distor-

tion or misperception is coming from. For example, the information might be manipu-

lated at the source without the knowledge of the DM, the DM might not understand the

signal-generating process correctly, or might suffer from perception limitations. A signal

distortion is a mapping d : X 7! X. When observing an experiment X with possible signals

SX = {s1, ..., sk }, a DM subject to distortion d is under the impression that the experiment

yields signals Sd
X = {sd

1 , ..., sd
k }. This again can be represented by a matrix X d 2X, where each

column corresponds to a distorted signal.

A DM might also hold a biased view about which state is likely to occur, i.e., holds a

prior belief p 2 ¢(≠) that differs from some reference belief µ. This is referred to as a bias

in prior. One could see µ as the true probability distribution according to which states

realize and p as a biased view due to previous perception mistakes. It could alternatively

be interpreted as a difference between the assessment of the DM and that of an observer,

without any judgment regarding their accuracy.5 In this case, the DM’s belief is ‘biased’

merely from the perspective of the observer. When these are not identical, p refers to the

belief of the DM, and µ to the true distribution (actual or presumed). Welfare is evaluated

according to µ.

After observing the result of the experiment, the DM updates their prior belief according

to Bayes’ rule but on the basis of the distorted signal sd :

p(sd ) = sd ±p
hsd , pi

(2)

where sd ±p denotes the element-wise product, and hsd , pi the dot product of the two vec-

tors. In comparison, an unbiased, fully Bayesian observer revises their belief as follows:

µ(s) = s ±µ
hs,µi . (3)

As X and X d are both experiments, Bayes’ consistency holds with and without mispercep-

tion, meaning the expected posterior equals the prior.6

Information Moderation:

Before a signal reaches the decision maker, it is first observed by an information modera-

tor, who can influence its content, i.e., ‘moderate’ the information flow. In particular, given

5See Morris (1995) for a detailed discussion of the rationality of heterogeneous priors.
6More generally, one could imagine a distortion that results in an X d that is not a proper experiment, i.e., is not

row-stochastic. For such an X d , Bayes consistency would fail. Just from introspection, the DM could identify
a problem in the decision-making. For simplicity, we exclude such cases. However, most results would remain
unaffected by this generalization.
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some X , a moderator can change a signal s 2 SX to some s 0 2 SX , which is perceived by the

DM instead. A moderation policy is a function

m : SX 7!¢(SX ), (4)

where ¢(SX ) is the convex hull of SX . A moderation policy is called deterministic if it (ef-

fectively) maps to SX . Since signals are characterized by their probability profile, the actual

signals received by the DM given some moderation policy m are denoted by sm . If, for in-

stance, m(si ) = s j = m(s j ), then sm
j = si + s j and sm

i = 0.7 A moderation policy is a type of

garbling and describes how signals are ‘swapped’. It can be expressed as a |SX |£|SX | garbling

matrix M =
°
mi j

¢
1∑i , j∑k , where mi j is the probability with which the DM perceives sd

j given

that the moderator observed signal si . The experiment effectively becomes:

X m = X M .

The moderator can commit to a moderation policy but has no intrinsic incentive to mis-

inform the DM. Preferences are assumed to be identical. Moreover, the moderator is not

aware of the state but relies on the same signal realizations to update the prior. However,

the moderator is not subject to distortions and thus (possibly) more skilled with regards to

processing information or understanding the signal-generating process. The moderator is

also assumed to be aware of the DM’s distortions and biases, or at least their choice profile.

In other words, the moderator updates based on the true X and µ, but is aware of the DM’s

view regarding X d and p . The moderator may thus choose to implement a non-trivial mod-

eration policy (M 6= I ). If this strictly increases expected utility, it is referred to as beneficial

moderation.

We distinguish between two types of decision makers: those oblivious to the modera-

tion policy, who we call naive,8 and those aware of the moderator’s interference, who we

call sophisticated. A naive DM updates according to X d , while a sophisticated one adjust

for the moderation policy and instead updates according to X d M . The latter case is also

the one where commitment is (potentially) relevant, as the interaction between moderator

and sophisticated DM is strategic. In line with the persuasion literature, we are interested

in the sender-preferred Perfect Bayesian Equilibrium outcomes for the sophisticated DM.

The distinction of types allows us to examine more closely the interplay between strate-

gic/informational sophistication, imperfections in decision making, and information mod-

eration.

Indirect Utility:

When comparing outcomes between decision makers with and without distortions and bi-

7For completeness, we assume µ(0) = µ. Since this is a probability 0 event, this (or any other assumption on
the resulting posterior) remains without consequences.

8This is also sometimes referred to as a ‘credulous’ type. See, for instance, Kartik et al. (2007).
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ases, it is useful to distinguish two cases: the maximum expected utility that can be obtained

from the experiment, and the expected utility conditional on some action profile a. Denote

the maximum expected utility for a prior µ from an undistorted experiment X by:

V (X |µ) ¥ max
a§2A|SX |

X

s2SX

hµ, si ·E
£
u(a§

s |!)|µ(s)
§
. (5)

We also refer to this as the value of the experiment X . Similarly, the expected utility from X

given some action profile a is denoted by:

V (X |a,µ) ¥
X

s2SX

hµ, si ·E
£
u(as |!)|µ(s)

§
. (6)

Any departure from V (X |µ) arises from a decision maker optimizing subject to distortions

and biases, while the actual expected utility is determined by the undistorted X and unbi-

ased µ. For instance, the expected utility that a DM subject to distortion d and biased prior

p actually obtains from X can be expressed as V (X |a§,µ), where a§ is the action profile

consistent with V (X d |p). If a moderator intervenes, we have to distinguish between the two

types of decision maker. The expected utility a naive DM subject to a moderation policy m

obtains from X equals V (X M |a§,µ), where again a§ is the action profile consistent with

V (X d |p). In comparison, a sophisticated DM obtains V (X M |â,µ), where â is the action

profile consistent with V (X d M |p), i.e., the optimal choice given a belief p , perceived signals

Sd
X , and policy m.

Gain from Information:

How valuable an experiment is depends on the signal strength and the chosen action

profile (and more generally the set of available actions). Misperception and biases affect the

perceived signal strength and posterior beliefs. They thus leads to a discrepancy between

the value expected by the DM and that of a neutral observer. However, this only negatively

impacts expected utility (as judged by an observer) through its effects on choices. Given

an action profile a, we define the gain from an experiment as the difference in expected

utility between this choice and the action profile the DM would choose without access to

an informative experiment. Since the DM might hold a different prior, choices are made

according to p but evaluated against µ.9 The conditional gain makes a similar comparison

to an outcome without any informative experiment, but relative to best outcome that can

be achieved among the actions that are part of a. The conditional gain again compares ex-

pected utility against a hypothetical setting without information, but with the DM unaware

that X is uninformative.

Definition 1 (Gain from information). Given an action profile a = (a1, ..., ak ) and prior belief

9This is similar to the definition in Kamenica and Gentzkow (2011), except for the conditioning on a and the
potential difference in priors.
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p , the conditional gain from an experiment X at µ is defined as

V (X |a,µ)° max
a2{a1,...,ak }

E [u(a|!)|µ],

and the gain from X at µ is defined as

V (X |a,µ)°E [u(a§|!)|µ]

with a§ = argmaxa2AE [u(a|!)|p].

4 Analysis

We first analyse the effects of distortions and biases. We then characterise the general op-

timization problem from the perspective of the moderator (Theorem 1) and subsequently

explore when and how a moderator can help reduce the effect of perception issues and when

moderation fails to have a positive impact. Particular emphasis is placed on contrasting the

optimal (i.e., utility maximizing) moderation policy for naive decision makers (Proposition

1), with that for a sophisticated DM (Proposition 2), and exploring the ambiguous conse-

quences of higher sophistication. We further examine what choices reveal about the type

of distortion a DM faces and their implication on beneficial moderation (Proposition 3).

Finally, we investigate a phenomenon we refer to as ‘complete disagreement’, where mod-

erator and DM completely disagree about the implications of signals on optimal choices,

despite (potentially) having a comparable qualitative understanding of the experiment. In

these instances, the moderator would want to completely misinform a decision maker about

at least some of the outcomes of the experiment (Theorem 2).

4.1 Distortions, biases and their implications

Consider a patient consulting a doctor for advice. The interaction is summarized by the fol-

lowing game, which is adopted from Farrell and Rabin (1996), where rows reflect the doctor’s

information after a diagnostic test, and columns the patient’s actions:

patient

aH aL aM

doctor’s information
µs (3,4) (2,1) ( 7

2 , 7
2 )

µt (2,1) (3,4) ( 7
2 , 7

2 )

The doctor (‘she’) considers aM the best course of action, while the patient (‘he’) prefers to

take aH if the doctor’s information is µs , and aL otherwise. In a cheap talk setting, there

are effectively two distinct equilibria: one that yields actions aL and aH in the appropriate
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(a) expected utility of action profiles
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(b) indirect utility given misperception

Figure 1: Misperception leads to non-convexities in indirect utility as a function of µ0 (i.e.,
V (X |a§,µ0), with a§ the patient’s perceived optimal choice at each µ0).

cases, and a ‘babbling’ equilibrium that results in aM regardless of the message of the doc-

tor. Farrell and Rabin convincingly argue that the former is somewhat implausible. It is only

sustained because the patient interprets any message as indicating one of the two informa-

tion states. The doctor should make it clear that she is not conveying information and thus

achieve her preferred outcome. We argue, however, that both outcomes can result from a

doctor optimally moderating the information flow. The interaction can be interpreted as a

doctor facing a patient misperceiving the accurateness of the exam. If the patient is naive,

this results in the revealing equilibrium, while if the patient is sophisticated, the doctor can

induce the babbling equilibrium.

Example 1.1. Suppose the strategic game is a condensed representation of the following

setting: the patient is either healthy (!L) or has a disease (!H ). He can continue as usual

without treatment (aL), take an appropriate mild treatment but otherwise continue as nor-

mal (aM ), or follow an aggressive course of action (aH ) with additional changes in lifestyle,

etc. The doctor conducts a diagnostic test that yields signals s and t with sH = 0.6 = tL .

Let payoffs be u(aH |!H ) = 5 = u(aL|!L), u(aM |!H ) = u(aM |!L) = 7
2 , and 0 otherwise. For

simplicity, rather than relying on the vector notation, let µ0 and p0 describe the ex-ante

probability of having the disease, i.e., the true state being !H . If µ0 = p0 = 1
2 , the test is not

informative enough to condition actions on the results. If, however, the patient (incorrectly)

believes the accuracy is higher, i.e., sd
H = 0.8 = t d

L , he will strictly prefer to condition actions

on the test, with aH and aL taken after the corresponding result. Figure 1 visualizes the

actual and perceived expected utilities.

The patient knows the doctor has observed one of the outcomes. If he is naive, he doesn’t

take into account any possible moderation and interprets every message as indicating one of

those results. The doctor’s best course of action is to convey the result accurately (m(s) = s,

m(t ) = t ) despite the patient’s misperception and suboptimal action choices. There exists no
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beneficial moderation policy. If, however, the patient is sophisticated, the doctor can send

a sufficiently garbled message, so that the patient no longer considers it accurate enough to

condition outcomes on it (e.g., m(s) = 1
2 s+ 1

2 t = m(t )). This leads to the best course of action

from the doctor’s point of view. ¶

The beneficial intervention becomes possible due to the discontinuities and hence non-

convexities in V (X |a§,µ0). This is analysed in more detail in the Online Appendix (C.1). In

particular, Result A.1 shows how both misperception and biases cause such non-convexities

for at least some beliefs.10 As a result, expected utility is non-monotone in the Blackwell-

informativeness of X , meaning more information is not unambiguously beneficial.11 For-

warding all information accurately is no longer necessarily the dominant strategy. Mis-

perception renders the interaction strategic, even though preferences are fundamentally

aligned. Naivete and sophistication correspond to different variations of the resulting strate-

gic communication game.

4.2 Beneficial moderation

A choice of action profile is suboptimal if it fails to realize the maximum value of an exper-

iment. But the existence of a superior choice does not imply that a moderator can actually

induce it. As Example 1.1 already demonstrated, the decision maker’s choice behavior and

signal perception constrain the influence of the moderator. This section formally identifies

this constraint as well as the moderator’s optimization problem.

Upon observing the outcome of an experiment X , a moderator with a prior µ reaches a

posterior belief in the set
©
µ(si )

™k
i=1. For the same experiment, but given a distortion d and

a prior p , a DM reaches a belief in
©

p(sd
i )

™k
i=1. Let P denote the convex hull of the possible

posterior beliefs of the DM, and Q for the moderator. A moderation policy can only yield

posterior beliefs inside these two sets. Take an element q̂ 2 Q. By definition, this can be

written as a convex combination of beliefs in
©
µ(si )

™k
i=1. Denote the corresponding convex

weights by the column vector w d = (w d
1 , ..., w d

k ). Any such weights can also be applied to
©

p(sd
i )

™k
i=1, which yields a belief p̂ 2 P , noting that the sets have the same cardinality. And

for any belief, there is at least one action â 2 A that maximizes expected utility from the

perspective of the DM (i.e., U (â|p̂)). We can thus define a choice correspondence that maps

each convex weight w d to the utility maximizing choice(s) at the corresponding belief in P :

C (w d ) ¥
©

â 2A
ØØ â = argmax

a2A
U (a|p̂), p̂ =

kX

i=1
w d

i p(sd
i )

™
. (7)

10This echoes Brandenburger et al. (1992), which establishes the equivalence of distortions and heterogeneous
priors in a correlated equilibrium setting. The equivalence, however, requires giving up Bayes’ consistency
of distorted beliefs.

11The unambiguous benefit of information refers to a case where observing X is costless. Conditions for a
negative marginal return of information if its acquisition is costly have been discussed in Radner and Stiglitz
(1984) and Chade and Schlee (2002).
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However, a garbling of X givenµmight not yield the same convex combination of poste-

rior beliefs as the same garbling of X d given p . Nevertheless, the moderated experiments

X M and X d M pin down the posterior beliefs and corresponding convex combinations.

There thus exists a function that relates the convex weights, and hence posterior beliefs, be-

tween moderator and DM. Theorem 1 below identifies this relation. If the weights to obtain

each element in Q were unique, any element of Q could be directly associated with exactly

one element in P and the utility maximizing choices consistent with it. However, this is only

the case if |SX | = dim(X ) ∑ |≠|. In general, the element in P corresponding to some q 2 Q

depends on the weights used to obtain q .

As C (w d ) does not necessarily yield a singleton, we need to define the (maximum) ex-

pected utility of a set of actions Â µ A given a belief q :

U (Â|q) ¥ max
©
U (a|q)

ØØ a 2 Â
™
. (8)

This allows us to look at the problem of finding a beneficial moderation policy entirely from

the perspective of the moderator. For any set of beliefs in the convex hull of the modera-

tor’s posterior beliefs
©
µ(si )

™k
i=1, we can find convex weights that generate these. Using the

corresponding weights for the DM, the choice correspondence and U (sophisticated), or

the original choices and U (naive), we can compute the maximum expected utility (from the

moderator’s perspective) at each of these beliefs. Note that the sender-preferred equilibrium

allows the moderator to induce their most-preferred action from the correspondence.

Given a distribution over this set of beliefs, we can compute the expected utility at the

prior. It is well understood that for any set of beliefs that contains the prior in its convex hull,

we can find a distribution that is Bayes’ consistent (e.g., Shmaya and Yariv (2016)). To estab-

lish the link to the corresponding beliefs of the DM, however, we need to identify these by

the garbling they are obtained with. These are then necessarily Bayes’ consistent and can be

achieved with a moderation policy. If for any of these distributions expected utility exceeds

the one from the original experiment and choices (i.e., V (X |a,µ), where a are the DM’s util-

ity maximizing choices given X d and p), then there exists a beneficial moderation policy.

The optimal moderation policy maximizes expected utility among these distributions.

Theorem 1. Suppose given an experiment X , distortion d, and priors p and µ, the DM

chooses an action profile a. Then there exists a beneficial moderation policy if and only if

there exists a row-stochastic matrix M =
°
mi j

¢
1∑i , j∑k 6= I such that:

- (naive)
Pk

i=1ºi ·U (ai |qi ) >V (X |a,µ),

- (sophisticated)
Pk

i=1ºi ·U (C (w d
i )|qi ) >V (X |a,µ),

where ºi =
Pk

j=1 m j i hµ, s j i, qi =
Pk

j=1 w j iµ(s j ), w j i =
m j i hµ,s j iPk

j=1 m j i hµ,s j i
, w d

j i =
m j i hp ,sd

j iPk
j=1 m j i hp ,sd

j i
, and

w d
i the column-vector (w d

1i , ..., w d
ki ).
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The problem of finding the optimal moderation policy is thus equivalent to finding a

Bayes’ consistent distribution over posteriors in Q, with the chosen actions dictated by the

corresponding beliefs of the DM. And those beliefs can be obtained through the garbling

that generates the moderator’s distribution over beliefs (Proposition 8 in Appendix B com-

pletes this argument based on Blackwell (1951)). This problem would look identical if pref-

erences were not aligned and the moderator would simply want to induce actions more

beneficial to them. But as Example 1.1 demonstrated and will be shown in greater detail,

even for aligned preferences, solutions will often be non-trivial. Nevertheless, it should be

noted that given the beliefs, distortions, and biases, solutions are not necessarily consistent

with both cases. In other words, for a given set of beliefs, some moderation policies might

only be consistent with misaligned preferences. Results in Section 4.4, for instance, allow

for such a distinction.

Theorem 1 also highlights the key difference between a naive and a sophisticated deci-

sion maker. Unaware of any moderation, no interference by the moderator can modify the

set of chosen actions of a naive DM. The moderator can only affect when and how often

these choices are executed, i.e., ‘pick’ among the actions that are chosen by the DM after

some signal. In the most extreme case, by garbling one signal entirely into another, actions

can be effectively removed but no new action can be introduced. The situation is more com-

plex for a sophisticated DM who reacts to the moderation policy. Any convex combination

of beliefs (subject to the garbling restriction) can be mapped to a corresponding choice aris-

ing from DM’s maximization problem and signal perception. This alters not only the relative

frequency of actions but also (potentially) affects the set of choices. This gives the moder-

ator additional freedom in terms of actions but simultaneously constrains when and how

frequently they can be induced. It is therefore not immediately clear if sophistication in-

creases the benefit from moderation. Whether or not this benefits moderation depends on

whether the alternative choices are superior from the perspective of the moderator.

As a first key observation, despite the complexity of the problem, binary relations play

an important role. For some distinct i , j 2 {1, ...,k}, let ai! j be the modified action profile

based on a = (a1, ..., ak ), where ai replaces a j , and all other actions remain unchanged. We

say the moderator prefers action profile a over some a 0, if it achieves higher expected utility.

Lemma 1. Suppose a DM chooses an action profile a. There (generically) exists a beneficial

moderation policy

- for a naive DM, if and only if the moderator prefers ai! j to a for some i , j 2 {1, ...,k},

- for a sophisticated DM, if the moderator prefers ai! j to a for some i , j 2 {1, ...,k}.

Beneficial moderation requires disagreement between the DM and moderator regarding the

expected utility ranking of an action that is chosen and one that could be induced. For a

naive DM, all instances of beneficial moderation can be identified by comparing the DM’s

preferred action to that of the moderator, with the set of actions restricted to those chosen
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by the DM at some belief. For a sophisticated DM, cases of such disagreement is generically

sufficient but not necessary for beneficial moderation to be feasible.12 A moderator can

switch some signals, and hence actions, with a sufficiently low probability without altering

the action profile itself. But there are instances where this is not beneficial and yet inducing

another action might be. Lemma 1 thus reveals that a moderator can beneficially intervene

in more instances if the DM is sophisticated.

In the next section, we explore how this relates to the underlying signals. This allows us

to address more specifically how misperception and biases affect the gain from information,

what this implies for the optimal moderation policy, and the extent to which moderation can

benefit each type.

4.3 Moderation & the gain from information

Moderation is a form of garbling and as such renders an experiment (weakly) less Blackwell

informative.13 When the maximum expected utility is convex in beliefs, this cannot increase

the value of an experiment. The aim is thus to determine when biases and misperception

create non-convexities that can be addressed by garbling signals, and to further characterize

the optimal garbling.

It it is useful not to look at the entire experiment, but to take a binary perspective and

only consider the ‘relative’ information contained in two signals. One can think of this as the

information that remains from the experiment, knowing that one of the two signals has oc-

curred. Figure 2 provides a schematic representation. Denote by X4(si , s j ) the experiment

generated from X , with signal si ± [si + s j ]°1 replacing si , signal s j ± [si + s j ]°1 replacing s j ,

and all others equal 0. These hypothetical signals are a rescaling of si and s j such that for

each state, probability ratios are preserved, but probabilities sum to 1. The related interme-

diate (i.e., conditional) beliefs, knowing that either si or s j has occurred, are denoted by µi j

and pi j . Note that if |SX | = 2, then this simply reduces to X , µ, and p respectively.

Deterministic moderation

We begin with the simplest moderation policy - a deterministic policy that replaces one (or

several) signal(s) with another from SX . If, for instance, si is replaced with s j , then after

observing s j , an unbiased observer can only conclude that either of the signals has occurred,

which leads to a posterior µi j . The information contained in X4(si , s j ) is removed by the

moderation policy, meaning X m
4 (si , s j ) is uninformative. A naive DM nevertheless reaches

a posterior belief p(sd
j ) and thus takes a j after both si and s j . This removal of information

12Generically, in the sense that it only requires a strict preference for ai over a j at the belief p(sd
i ). With count-

able actions, this is satisfied for almost all beliefs.
13Formally, an information experiment X 2X is more informative than an information experiment Y 2X, with
|SX | = |SY | = |S|, if there exists a |S|£ |S| row-stochastic matrix G 6= I such that Y = XG . In this case, we say
the two experiments are Blackwell-ordered.
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µ

µ(si )

µ(s j )

µi j

Figure 2: Starting from a prior µ, the experiment X results in a posterior µ(si ) if signal si occurs
(equivalently for s j ). The solid line illustrates the ‘relative information’ between si and s j . Starting
from µi j , experiment X4(si , s j ) leads to a posterior µ(si ) or µ(s j ).

is beneficial if the conditional gain from X4(si , s j ) is negative at µi j , i.e., in the case where

the DM’s failure to effectively use the relative information leads to a choice sufficiently far

from the optimum. In contrast, a sophisticated DM is aware of the removal of information

and thus chooses the optimal action at pi j (the conditional belief knowing that either sd
i

or sd
j has realized). This is beneficial if the gain from X m

4 (si , s j ) at µi j is negative. The key

question for the moderator is thus whether this optimal choice at pi j is also superior (to the

original choices) at µi j .

Proposition 1. A beneficial deterministic moderation policy exists

- (naive DM) if and only if the conditional gain from X4(si , s j ) is negative at µi j ,

- (sophisticated DM) if the gain from X4(si , s j ) is negative at µi j ,

for some signals si , s j 2 SX .

While the optimal deterministic policy might affect more than two signals, a loss from a bi-

nary experiment at an intermediate belief is nevertheless necessary and sufficient for bene-

ficial (deterministic) moderation to exist for a naive, and sufficient for a sophisticated DM.

Proposition 1 thus links Lemma 1 to the relevant informational aspects of the experiment. A

deterministic moderation policy is, of course, extreme in its effect on the information con-

tent of signals. Nevertheless, as Corollary 1.1 shows, it is optimal for a naive decision maker.

Corollary 1.1. The optimal moderation policy for a naive DM is deterministic.

Non-deterministic moderation

Even for a sophisticated decision maker, a deterministic moderation policy can be optimal.

Figure 3 (a), (b) schematically illustrates this case. Panel (a) highlights which choices are

optimal from the DM’s perspective, and (b) what the moderator considers optimal. After

signal si , the DM and moderator disagree about the optimal action: the moderator prefers

action a2 over a1. Moreover, a2 is also the preferred action by both moderator and DM atµi j

and pi j respectively. From the moderator’s point of view, the information from X4(si , s j ) is

not valuable. As the DM takes the ‘correct’ action at pi j , the gain from information is neg-

ative. With a deterministic policy m(si ) = s j (or equivalently m(s j ) = si ), the moderator
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eliminates the relative information between the two signals. Aware of this garbling, the DM

can no longer distinguish which of the two signals signals has occurred and hence takes the

moderator’s preferred action a2. This is, however, not the unique optimal policy. The moder-

ator could achieve the same outcome with a non-deterministic policy by randomly garbling

both signals into each other, destroying (enough of) the underlying information. The DM

correctly interprets the (perceived) signals as less informative and reacts accordingly.

As was already foreshadowed by the discussion of Lemma 1, a deterministic moderation

policy might neither be the only, nor the optimal way to influence a sophisticated DM. Fig-

ure 3 (c), (d) depicts a scenario where a non-deterministic policy is uniquely optimal for a

sophisticated DM and, in fact, achieves higher expected utility than any possible modera-

tion policy for a naive DM. By garbling some s j signals into si , the moderator moves the pos-

terior belief close enough to pi j so that a1 becomes optimal for the DM. The posterior belief

after observing s j remains unaffected (even though the belief itself becomes less likely).14

Finally, 3 (e), (f) demonstrates when there might be no beneficial moderation policy.

If the moderator prefers a0 to a3 at µ(si ) as well as µi j , then the gain from X4(si , s j ) is

unambiguously positive at µi j . Any garbling that induces the DM to take a3 after a signal

si cannot be beneficial. If the moderator also prefers a0 to a2 at µ(si ), then any garbling

between si and s j is suboptimal. There exists no beneficial moderation policy. Interestingly,

if instead the moderator preferred a2 to a0 atµ(si ), a naive DM would do strictly better under

their optimal (deterministic) policy m(si ) = s j than the sophisticated DM, whose optimal

moderation policy is non-deterministic.

This discussion suggests that the optimal moderation policy sharply differs from what

we established for a naive DM. In contrast to Corollary 1.1, Proposition 2 shows that if a

decision maker is sophisticated, a non-deterministic moderation policy is always weakly

better and uniquely optimal in some cases.

Proposition 2. Suppose the DM is sophisticated. Then for every beneficial deterministic pol-

icy, there exists a non-deterministic policy that achieves (weakly) higher expected utility. The

set of optimal policies might not include a deterministic policy.

Example 1.2 illustrates the differences in optimal moderation policies in a specific case

and highlights the ambiguous effect of sophistication, particularly given a bias in prior.

Example 1.2. Consider a slightly modified version of Example 1.1. Suppose now

u(aM |!H ) = u(aM |!L) = 3.75, with all other payoffs as before. Signals are such that sH =
0.75 = tL , and there is no misperception. The patient can benefit from the diagnostic test

by choosing a profile (aL , aM ) for low/intermediate priors, and (aM , aH ) for higher priors

14Note that a deterministic moderation policy might also be beneficial here: if E [u(a2|!)|µ(si )] >
E [u(a0|!)|µ(si )], the gain from information at µi j is negative, implying the existence of a beneficial de-
terministic policy. But since the moderator prefers a1 to a2 at µ(sm

i ), this cannot be optimal. In this case, a
sophisticated DM benefits more from moderation than a naive one.
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pi jp(si ) p(s j )p(sm
j ) =

a1 a2

(a) deterministic policy (DM)

µi jµ(si ) µ(s j )µ(sm
j ) =

a2

(b) deterministic policy (moderator)

pi jp(si ) p(s j )p(sm
i )

a0 a1 a2

(c) non-deterministic policy (DM)

µi jµ(si ) µ(s j )µ(sm
i )

a1 a2

(d) non-deterministic policy (moderator)

pi jp(si ) p(s j )

a0 a3 a2

(e) no beneficial moderation policy (DM)

µi jµ(si ) µ(s j )

a1 a2

(f ) no beneficial moderation policy (moderator)

Figure 3: (In-)feasibility of beneficial moderation with a sophisticated DM

(see Figure 4 (a)). Suppose the doctor concludes µ0 2 (0.25,0.5), while the patient believes

p0 2 (0.5,0.75). The doctor considers the aggressive treatment option strictly inferior to the

intermediate one (at the prior and each posterior). The (conditional) gain from the test given

the profile (aM , aH ) is negative. This leaves the possibility to beneficially moderate the test

result; either with a deterministic policy or with one that completely garbles both signals

into white noise. For any such policy, a patient aware of the doctor’s effort to obscure the

result is then willing to resort to the more conservative treatment. In contrast, the optimal

moderation policy for a naive patient is uniquely deterministic (always return a negative

result). Nevertheless, the expected utility outcome is the same for both types. The doctor

cannot, however, achieve the first best: no patient (sophisticated or naive) is willing to forgo

treatment completely after a negative test result for any moderation policy.

If the patient exaggerates the risk of infection even further (p0 2 (0.75,0.9), then the pa-

tient is still willing to take the test, but their preferred default (at the prior) is the aggres-

sive treatment. If the patient is sophisticated, the optimal moderation policy must be non-

deterministic (see Figure 4 (b)). It turns positive into negative test results with a just high

enough probability, such that the patient is indifferent between (aH , aH ) and (aM , aH ). For

priors µ§ and p§, the optimal moderation policy yields û instead of u. For a naive patient,

however, the optimal policy is such that all positive results are converted into negative ones.

This yields u. A naive patient is strictly better off. ¶

An important aspect in determining whether sophistication poses a (dis-)advantage is
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Figure 4: Expected utility of action profiles (Example 1.2)

whether or not the moderator and the DM agree about the default action, i.e., the action

taken when all relative information is removed. In Figure 3 (e) and (f), as well as in Exam-

ple 1.2 / Figure 4 (b), there is disagreement over which action is best if X4(si , s j ) (and its

distorted counterpart) is uninformative. In contrast, Figure 3 (c) and (d) illustrates a case

where the moderator and DM agree on the default action. Since disagreement over the de-

fault action requires µi j 6= pi j , a sophisticated DM can only be unambiguously better-off if

there is no such discrepancy in conditional beliefs. Corollary 2.1 formalizes this observation.

Corollary 2.1. If µ = p , |SX | = 2, and E [u(ai |!)|µ(si )] ∏ E [u(a j |!)|µ(si )] for at least one

of the signals si 2 SX , then the optimal moderation policy for a sophisticated DM achieves

(weakly) higher expected utility than that for a naive one.

In a binary setting, sophistication proves an unambiguous advantage if priors are aligned.

The DM’s adjustments in choices in response to moderation enhance the benefit from mod-

eration. With only two signals and no bias in prior, the moderator and sophisticated DM

trivially agree about the conditional belief µi j , since it corresponds to the prior. Accord-

ingly, they agree about the best action in the absence of any information. If the distortion

does not completely reverse the correlation between signals and states, meaning a DM is no

better-off by switching both actions, the optimal policy of a sophisticated decision maker

achieves a (weakly) better outcome than that for a naive one.

While these conditions might appear restrictive, the characterisation is tight. Relaxing

any of the three conditions can lead a sophisticated DM to be strictly worse-off. The effect

of sophistication becomes ambiguous if distortions and/or the information environment

become more complex. With more than three signals, even if µ= p , we can have µi j 6= pi j ,

since a distortion also affects conditional beliefs. This can lead the moderator and decision

maker to disagree over which is the best action when all relative information between

signals si and s j is removed. Sophistication can then negatively affect the benefit from
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moderation. In this sense, a binary setting is not representative. For µ 6= p , this disagree-

ment over conditional beliefs is trivially possible. Finally, a distortion and/or bias in prior

can cause actions to be chosen that a moderator would prefer to symmetrically swap.

Section 4.4 explores this in detail and shows how this benefits naive DM (weakly) more than

a sophisticated one.

Beliefs, choices, and beneficial moderation

If there are only two states of the world, any distortion can be described as either an

over- or underestimation of signal strength. Furthermore, correlations between sig-

nals and states are either retained or reversed. For each s, the DM updates ‘too much’

(|µ(sd )°µ| > |µ(s)°µ|), or ‘too little’ (|µ(sd )°µ| < |µ(s)°µ|), and possibly in the wrong

direction. With n > 2 states, even if there are still only two signals, such a binary comparison

of beliefs is no longer suitable, as the distorted signal can result in both ‘too much’ updating

for some states and ‘too little’ for others. Nevertheless, we can still define a notion that

captures the relevant effects of under- and overestimation of signal strength on choices,

particularly when looking at the relative information in two signals, i.e., X4(si , s j ).

Definition 2 (Misestimation of signal strength). For an experiment X , prior µ, and chosen

action profile a = (a1, ..., ak ), suppose there is some ai 6= argmaxa2AE [u(a|!)|µ(si )]. We say

ai is consistent with an underestimation of signal strength at µi j if there exists an Æ 2 [0,1),

such that ai = argmaxa2AE [u(a|!)|µÆ], for some µÆ =Æ ·µ(si )+ (1°Æ) ·µi j . It is consistent

with an overestimation of signal strength at µi j otherwise.

To see the relevance of Definition 2, note that whether moderation is possible depends not

on the beliefs directly, but the actions they induce. The critical question becomes whether

actions are consistent with an unambiguous reduction in (relative) informativeness (the dis-

torted posterior lies on a straight line through some intermediate belief and undistorted

posterior) or whether actions can only be rationalized with signals that contain additional

information. Suppose a suboptimal action is chosen after a signal si . If this choice is optimal

for a belief (of the moderator) that can be written as a convex combination ofµ(si ) and some

conditional belief µi j , then we say it is consistent with a underestimation of signal strength

atµi j (or simply relative underestimation). The choice can be rationalized with a X4(sd
i , sd

j )

that is less Blackwell-informative than X4(si , s j ). The definition further requires that the

correlation between states and signals is not reversed. Any choice inconsistent with such a

relative underestimation implies that the DM wrongly believes that the signal contains some

additional information (at least relative to some signal). In this case, we say choices are con-

sistent with a (relative) overestimation of signal strength at at µi j . Proposition 3 establishes

that the latter is a requirement for beneficial moderation to be feasible. It is subsequently

demonstrated that the ‘relative’ perspective is crucial.
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Proposition 3. For any distortion d and priors µ, p , there exists a beneficial moderation pol-

icy only if there is a choice ai in a and signals si , s j 2 SX such that ai is consistent with an

overestimation of signal strength at µi j .

Figure 5 visualizes some key cases. A relative underestimation of the signal strength of si

can lead to a suboptimal choice (action a2), which cannot be improved upon with modera-

tion (a). It is irrelevant whether the signal strength is actually underestimated or choices are

merely consistent with such an underestimation (b). Notice how (b) is not simply an under-

estimation of relative signal strength. The posteriors for the distorted signals are pointing in

a different direction than those for the undistorted signals, which indicates that they contain

additional (or different) information with regards to some state. When the choice after si is

not consistent with some posterior betweenµ(si ) andµi j , the DM must overestimate the in-

formativeness of the signal in at least some direction (c). In this case, beneficial moderation

might be possible (d), e.g., the moderated-signal restores action a2.

µi j

pi j

µ(si ) µ(s j )

p(s j )p(sd
i )

a1 a2

(a) underestimation of signal strength

µi j

pi j

µ(si ) µ(s j )p(sd
i )
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Figure 5: (In-)feasibility of beneficial moderation

As an immediate implication, in a binary setting with only two states and two signals,

any distortion that makes a signal appear less precise to the DM (without reversing the cor-

relation between signals and states, as captured by the the second condition in Corollary

3.1), does not allow for beneficial moderation.

Corollary 3.1. Suppose |≠| = |SX | = 2 and µ = p . Then there exists a beneficial moderation

policy only if for some si 2 SX :

sd
i .!

sd
i .!0

> si .!

si .!0
> 1 or

si .!

si .!0
> 1 >

sd
i .!

sd
i .!0

.

As moderation implies a destruction of information, is seems unsurprising that it cannot

be helpful in cases where the informativeness of a signal is already underestimated. How-

ever, with |SX | > 2 signals, this argument is not as straightforward: suppose the distortion is
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perceived garbling between a signal si and s j . The informativeness of si at µi j is underes-

timated. However, beneficial moderation might still be possible as the distortion generally

causes the DM’s intermediate belief pi l to differ from µi l for a signal sl 6= si , s j . At µi l , the

distortion might then be inconsistent with an underestimation of signal strength, since sd
i

contains some information from sd
j . Proposition 3 only rules out beneficial moderation if a

distortion is consistent with underestimation of signal strength relative to all other signals.

Again, a binary setting is of limited representativeness. Example 2.1 illustrates the point.

Example 2.1. Suppose there are three states, {!1,!2,!3}, with each state being equally

likely ex ante. There are two actions, a1 and a2, resulting in payoffs u(a1,!1) ∏ u(a1,!2) >
u(a1,!3), and u(a2,!1) = u(a2,!3) > u(a2,!2). There are three symmetric signals {s1, s2, s3},

with si having a higher probability in state !i than in the other two states and with equal

probability in both other states. As can be seen from Figure 5, a1 is optimal after signals s1,

and s2, while a3 is optimal after s3.15

The (naive) DM instead perceives a distorted experiment, where each signal is symmet-

rically garbled with the other two such that sd
i still has higher probability in state !i , but

the likelihood ratios relative to the other states reduced. The DM would then prefer a2 after

signal s1, with all other choices unaltered. As X d is a garbling of X , the DM clearly under-

estimates the informativeness of the entire experiment.16 The posterior beliefs of the DM

are contained in the convex hull of the posteriors of the moderator. Nevertheless, this is not

consistent with a relative underestimation of signals. Action a2 is not optimal for any belief

in the set
©
Æ·µ(s2)+(1°Æ)·µi j , Æ 2 [0,1]

™
. And in fact, a beneficial moderation policy exists:

m(s1) = s2, and m equal to the identity mapping otherwise. ¶

Example 2.1 leads to an interesting conclusion: with more than two states, a moderator can

beneficially destroy information even if the decision maker already (strictly) underestimates

the informativeness of all signals. Amplifying misperception can reduce the utility loss.

The previous results were mostly concerned with moderation causing a strict reduction

in informativeness of signals. For a naive DM, optimal moderation in those cases is rather

‘heavy handed’. As the optimal moderation policy is deterministic, the relative information

between all signals that are garbled into each other is destroyed. Furthermore, they all lead

a naive DM to the same posterior, which corresponds to one of the posteriors in the absence

of moderation. The DM is being (completely) misinformed in at least some cases. Optimal

interventions for a sophisticated DM are (weakly) less aggressive. A moderator only destroys

as much information as necessary to induce superior choices. As a sophisticated DM takes

into account the reduced informativeness, posteriors become less distorted. Nevertheless,

15The graph is based on the following values: u(a1,!1) = 10,u(a1,!2) = 5,u(a1,!3) = 0, and u(a2,!1) =
u(a2,!3) = 9, u(a2,!2) = 0. The probability of observing si in state !i is 8/10, and 1/10 in all other states.

16The distorted experiment is obtained by right-multiplying X with the garbling matrix
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Figure 6: Posteriors of three distorted and undistorted signals in a belief simplex (Example 2). Poste-
riors after a signal si are denoted by µi and pi . The DM underestimates the signal strength of every
signal. Beneficial moderation remains possible as a2 is not consistent with an underestimation of s1

relative to s2.

there are cases where the complete destruction of information is more beneficial than a

partial one.

4.4 Complete disagreement

The final part of the analysis turns to a potentially counterintuitive and yet particularly in-

structive case: the moderator and decision maker ‘completely’ disagree about which action

should be taken after which signal. With complete disagreement, we mean that a modera-

tor believes an action a should follow a signal s, and action b a signal t , with the decision

maker holding the completely opposite view. This creates an incentive for the moderator

to fully misinform a (naive) decision maker by swapping each signal and thus inducing ‘re-

versed’ posteriors. From a strategic perspective, the interaction would appear to an outside

observer akin to a 0-sum game. This would be hardly surprising in a sender-receiver game

when preferences are opposed, but here the sender (i.e., moderator) and receiver (i.e., DM)

agree about which action should be taken in which state. Of course, if the signal distortion

were to completely reverse the information content of signals, this would be equally trivial.

But, as will be made precise, complete disagreement can occur even when the moderator

and DM agree, at least in principle, about the information content of the signals. In fact, we

show that such disagreement can arise solely as a result of a bias in prior.

Let ai$ j denote an action profile identical to a, except action ai is replaced with a j

and vice versa. In other words, while ai! j denotes a single substitution, ai$ j describes a

symmetric one.

Definition 3. Given a chosen action profile a, the moderator and DM are in complete dis-
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agreement if there exists ai$ j such that

V (X |ai$ j ,µ) > max
©
V (X |a,µ),V (X |ai! j ,µ),V (X |a j!i ,µ)

™
.

We say they are in complete disagreement over ai and a j .

Intuitively, complete disagreement becomes possible if a distortion and/or bias in prior cre-

ate a sufficient rotation between the posterior beliefs of the moderator and the DM, i.e., if the

direction of the updating is not sufficiently aligned between them. Lemma 2 fully character-

izes geometrically when an information environment allows for complete disagreement.

Lemma 2. Given an experiment X , distortion d, and priors µ and p , there exists preferences

such that the DM and moderator are in complete disagreement if and only if for some si , s j 2
SX , the line segments between µ(si ) and p(s

d
j ), as well as µ(s j ) and p(s

d
i ), do not intersect.

Figure 7 schematically depicts the two cases. In (a), the distortion and bias lead to a

clockwise rotation of the posterior beliefs relative to the moderator’s. The relevant line seg-

ments (solid lines) do not cross. As shown in (b), there are preferences such that the beliefs

µ(si ) and p(sd
j ) lie on one side of the indifference curve, and µ(s j ) and p(sd

j ) on the other.

There is complete disagreement. But this does not stem from a reversed correlation between

signals. Signals si and sd
i lead to a qualitatively comparable updating of beliefs, indicating

that they provide evidence towards the same states. The alternative scenario is depicted in

(c), where the equivalent line segments cross. Here, there is also a clockwise rotation of be-

liefs, but this is small relative to the (vertical) shift in beliefs. There are no preferences that

lead to complete disagreement; (d) depicts a particular example.

While the geometric characterization in Lemma 2 is complete, it is not always easy to

interpret or verify, particularly if the state space contains more than three states. To provide

a more convenient approach for analysing complete disagreement, we utilise the following

idea: the magnitude and direction of an update of beliefs can be described by a vector. How

updating between a DM and moderator differs is then reflected by differences between the

corresponding vectors and the space they span.

For a given experiment, distortion, and bias, all possible posterior beliefs (both for the

moderator and DM) can be described by elements of a vector space that originates at some

prior belief. We refer to this as the ‘belief space’. As a convention, we use µ as a reference

(i.e., origin), even though the DM’s prior p could equally be used.

Definition 4 (Belief space). The belief space of an experiment X relative to µ, given prior

p and distortion d, is the linear space spanned by the vectors
©

v1, ..., vk , w1, ..., wk
™
, where

vi =µ(si )°µ and wi = p(sd
i )°µ.

These vectors then allow us to formalize the notion of a DM not completely misjudging the

correlation between signals and states: we say beliefs satisfy non-reversal, if vi 6=°Æwi for
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Figure 7: Possibility of complete disagreement

any Æ> 0 and all i 2 {1, ...,k}, i.e., the direction of the update is not fully reversed. Naturally,

the definitions for belief space and non-reversal can be applied to any X4(si , s j ). The di-

mensions of the belief space for a given X4(si , s j ) has direct implications for the possibility

for complete disagreement. For a full characterization, we require one additional property:

Definition 5 (Opposing orientation). Let v , w , and x be vectors in a 2-dimensional vector

space. We say v and w have opposing orientation relative to x if the sets {x , v } and {x , w } both

are a basis and have different orientation, meaning the unique linear transformation L, with

{x , w } = {Lx ,Lv }, is such that det(L) < 0.

Simply put, two vectors satisfy opposing orientation if they point to a different side relative to

a third vector. This formalizes the notion of a ‘sufficient rotation’ in posterior beliefs, which

is the basis for complete disagreement. Take, for instance, an experiment X4(si , s j ). The

belief update from someµi j toµ(si ), as shown in Figure 8 (a), can be described by the vector

vi = µ(si )°µi j . For the DM, the same signal (perceived distortedly) leads to the posterior

p(sd
i ), captured by wi = p(sd

i )°µi j in the belief space. The equivalent is true for s j . If wi

and w j satisfy opposing orientation relative to vi , then - loosely speaking - one points to the

left of vi and the other to the right. If we think of a hypothetical line throughµ(si ) andµ(s j )

(and thus also µi j ), then p(sd
i ) must be on one side, and p(sd

j ) on the other. This is the case

in (b). In a sense, the distortion introduces perceived information that is not just orthogonal

to the experiment X¢(si , s j ), but that acts in opposing directions on the posteriors after sd
i

and sd
j . This creates a rotation in the posterior beliefs relative to µi j . Panel (c) shows a

similar case, but here the rotation is small compared to the shift in beliefs. Vectors wi and
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Figure 8: Opposing orientation illustrated

w j have the same orientation relative to vi . Note that Figure 8 depicts the two cases already

illustrated in Figure 7. The constellation of posterior beliefs in (a/b) allows for complete

disagreement, while no such disagreement is possible in (c/d). This points towards the key

role of orientation for complete disagreement.

Theorem 2 formalizes this relation and fully characterizes (non-trivial) cases of complete

disagreement. For a belief space of X4(si , s j ) relative to µi j , also let w0 = pi j °µi j .

Theorem 2. Given an experiment X , priorsµ, p , and distortion d, suppose the belief space of

X4(si , s j ) relative toµi j has dimension z. Let a = (a1, ..., ak ) be the DM’s chosen action profile.

• If z = 1 and beliefs satisfy non-reversal, there cannot be complete disagreement over ai

and a j for any preferences.

• If z = 2, there exist preferences such that there is complete disagreement over ai and a j

if and only if the opposing orientation property is satisfied by one of the following:

(i) wi and w j relative to vi , or
(ii) vi °w0 and v j °w0 relative to wi °w0, or

(iii) vi and wi relative to w0.

• If z = 3, there always exist preferences such that there is complete disagreement.

If the belief space of some X¢(si , s j ) is 1-dimensional, then beliefs cannot be rotated relative

to each other. Hence, there cannot be complete disagreement. Except, of course, in the triv-

ial case where a distortion completely reverses the correlation between signals and states.

This is ruled out by non-reversal. It follows that non-trivial cases of complete disagreement

require≠ to contain at least three states.

26



Corollary 3.2. Under non-reversal, there can be complete disagreement only if |≠|∏ 3.

With only two states, the belief space of any experiment is 1-dimensional, ruling out

(non-trivial) rotations. In a 2-dimensional space, which requires |≠| ∏ 3, such a rotation

is possible (but not necessary). Hence complete disagreement is a possibility in some

cases. These are captured by the property of opposing orientation which is necessary

and sufficient. To easily verify opposing orientation, Appendix A (Section A.2) provides a

method that relies solely on the determinant of 2-dimensional matrices constructed from

the relevant vectors. If |≠| > 3, the belief space can be 3-dimensional (the highest possible

dimension, given that there are at most three linearly independent vectors).17 If this is the

case, each of the four posteriors is necessarily rotated out of the plane spanned by the other

three. This is sufficient to guarantee the possibility for complete disagreement. This echoes

the observation by Alonso and Câmara (2016), that a richer state space, in particular |≠|∏ 3,

creates additional possibilities for persuasion under heterogeneous priors.

Moderating complete disagreement

Since Bernoulli utilities are fully aligned between the decision maker and moderator,

complete disagreement is based on a different understanding how information is to be

interpreted: it is as if correlations between states and some signals si and s j are completely

reversed. For |≠| ∏ 3, an actual reversal is not required, however. In fact, either a small

distortion that leads to a rotation of beliefs or a small difference in prior beliefs is sufficient.

Since complete disagreement implies a negative (conditional) gain from some experiment

X4(si , s j ) at µi j (Lemma 3 in Appendix A.1), beneficial moderation is generically possible

for naive and sophisticated DMs.

Proposition 4. Suppose that given a chosen action profile a, the moderator and DM are in

complete disagreement over some ai and a j . Then a beneficial moderation policy for both a

naive and a sophisticated DM generically exists.

If there is complete disagreement regarding some action profile a, an alternative action pro-

file can be constructed from the choices in a that achieves strictly positive conditional gain.

In principle, the moderator does not want to destroy relative information between si and

s j , but rather change its interpretation. For a naive DM, such a reinterpretation is possible

through a relabeling of signals, e.g., with a moderation policy m such that m(si ) = s j and

m(si ) = s j . No information is destroyed since experiments X and X m are equally (Black-

well) informative. This constitutes a strictly beneficial moderation policy and yet the naive

DM ends up completely misinformed in terms of posterior beliefs. For a sophisticated DM,

such a relabeling is not feasible. The DM would simply swap the labels again. Sophistication

constrains the moderator and forces a moderation policy that destroys relative information,

17Note that the vectors µ(si )°µi j and µ(s j )°µi j are necessarily linearly dependent.
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which potentially leaves a naive DM strictly better-off. Corollary 4.1 formalizes this for a

particular case, i.e., ai$ j is the (unconstrained) optimal action profile and ai or a j is unique

in a.18 While sophistication makes a decision maker harder to manipulate, it can also limit

beneficial interventions.

Corollary 4.1. Suppose given a chosen action profile a = (a1, ..., ak ), we have V (X |µ) =
V (X |ai$ j ,µ), and either ai or a j are not equal to any other a 2 {a1, ..., ak }. Then the optimal

moderation policy for a naive DM generically achieves strictly higher expected utility than the

optimal policy for a sophisticated DM.

To illustrate this further, suppose there is complete disagreement over some actions ai

and a j . If these choices do not correspond to the utility-maximizing actions at the undis-

torted posterior beliefs (i.e., a j is not utility maximizing at µ(si )), sophistication can be an

advantage. The strategic response by a sophisticated DM can potentially lead to a better

choice. If, however, both actions are nevertheless optimal (meaning from the perspective of

the moderator, they are simply chosen after the wrong signal), then (symmetrically) swap-

ping signals achieves the first-best. Such a swap can be directly implemented for a naive

DM. As sophistication prevents a relabeling, for a sophisticated DM this swap can be only

achieved if garbling si with some sl induces a j , and equivalently for s j . If, however, the

information provided by at least one of the corresponding signals is strictly valuable rela-

tive to any other signal,19 meaning V (X4(si , sl )|µi l ) > maxa2AE [u(a|!)|µi l ] for all sl 6= si ,

then even if the swap can be achieved, it causes a strict utility loss. A naive DM is then

strictly better-off. This also provides a complementary perspective to Corollary 2.1, which

established that if signals are binary (|SX | = 2), priors are aligned, and there is no complete

disagreement, sophistication cannot be detrimental. As can be easily verified, if the choice

environment is also binary (|A| = 2), then moderation achieves the same expected utility

whether the DM is naive or sophisticated. In contrast, when both choices and signals are

binary, but there is complete disagreement, sophistication is a strict disadvantage.

Corollary 4.2. Suppose |SX | = |A| = 2 and there is complete disagreement. Then the optimal

moderation policy for a naive DM achieves strictly higher expected utility than the optimal

policy for a sophisticated DM.

Complete disagreement without distortions

Complete disagreement follows from a sufficiently distinct interpretation of signals between

the moderator and DM. Proposition 5 shows that it does not require any distortion at all, but

can arise from a bias in prior alone. Moreover, if |≠|∏ 3 and signals have distinct probability

ratios across states, then a bias in prior that leads to complete disagreement necessarily

18This would, for instance, be the case if there is complete disagreement and |SX |∑ 3.
19Note that if several signals induce the same action, then the information provided by the respective signals

is not strictly valuable in the sense that there is a garbled X that yields the same choices and expected utility.

28



exists. Furthermore, we can find such a bias even when difference in beliefs are only ≤-small

(Lemma 4 in Appendix A.1).

Proposition 5. Let |≠|∏ 3 and suppose X is an experiment with two non-identical signals si

and s j that have distinct probabilities for at least 3 states. Then there exist preferences and a

pair of prior beliefs µ, p 2¢(≠) such that there is complete disagreement.

Example 3.1 illustrates a case where complete disagreement arises only from a difference

in priors and, in line with Corollary 4.2, a naive DM benefits strictly more from moderation.

Example 3.1. A firm is considering an applicant for a position and can either hire them

(aH ) or not (aN ). The firm employs an outside HR consultancy to conduct an assessment

and provide a recommendation. On the assessment test, the candidate can score highly

(signal s) or poorly (signal t ). There are three states: the candidate is highly skilled and

experienced at taking assessment tests (!1), highly skilled and inexperienced at taking tests

(!2), or does not have the required skills (!3). The assessment (X ) is such that a positive

result (s) is most likely if the candidate is skilled and experienced at tests, but inexperienced

applicants perform poorly on average. Probabilities are as follows:
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The firm’s payoff only depends on the candidate’s skill, not their test-taking ability. Hiring

a skilled candidate yields a payoff of 1, not hiring an a candidate yields 0, and hiring an

unskilled candidate yields -2. Based on the applicant’s profile, both the firm as well as the

HR consultancy assign probability 0.7 to the candidate being skilled. But while the firm

believes the candidate to be skilled but inexperienced with assessments (p), the consultancy

is under the impression that the candidate is experienced with tests (µ), with priors of p =
(0.1,0.6,0.3)T and µ= (0.6,0.1,0.3)T .

Figure 9 visualizes the posterior beliefs and payoff-maximizing actions in the belief sim-

plex. The firm and consultancy agree that hiring (aH ) is the optimal course of action in the

absence of any test. However, the test leads to complete disagreement. The firm interprets a

negative result as (further) evidence for a skilled but inexperienced test taker and would still

prefer to hire the candidate. The consultancy, however, takes a negative result at face value

and sees it as evidence for an unskilled applicant. The reactions to a positive test result are

symmetrically opposed.

The HR consultancy has an incentive to misinform the firm about the test result: deliver-

ing a negative result leads the firm to hire the candidate (as the firm then believes sufficiently

strongly in their limited experience with tests). Equivalently, a positive result induces action

aN , the preferred course of action from the perspective of the consultancy after a poor test
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Figure 9: Prior and posterior beliefs of HR consultancy (moderator) and employer (DM). The assess-
ment test induces complete disagreement.

performance. Reversing the test results (m(s) = t , m(t ) = s) leads to the first-best, or at least

maximizes expected utility from the consultancy’s point of view. If the consultancy is em-

ployed by a firm aware of any such tempering, then the best course of action is to fully garble

the outcome (i.e., not perform the test) despite considering the test results as valuable in-

formation. As in Example 1.2, a sophisticated client is strictly worse-off than a naive one. ¶

Maybe surprisingly, complete disagreement arises despite the agreement over the likeli-

hood of facing a skilled applicant, and the identical course of action whether the candidate

is experienced or inexperienced at assessment tests. States !1 and !2 are payoff equivalent.

The example thus also highlights that - since the dimension of the belief space is crucial for

the possible differences in beliefs and actions - combining seemingly identical states is not

without loss when modelling such decision problems.

5 Discussion

Welfare. The Welfare analysis in this paper is conducted from the perspective that the

moderator holds a more accurate prior belief and has a better understanding of the infor-

mation that signals reveal about the state of the world. We believe in many contexts, the

assumption that an expert suffers from fewer perception issues appears at least reasonable.

In these settings, given that information is purely instrumental, the moderation policy

implemented by a benevolent moderator will result in the DM making better choices on

average. One might plausibly interject that not everybody in the position to moderate

information has necessarily a more accurate view of the information environment. After

all, a firm might have superior information about which skills make an applicant a truly

good fit. In settings where the moderator has a different, but not more accurate view, the

welfare interpretation ‘flips’. In particular, as follows from Blackwell (1951), if the DM’s view

is more accurate, any non-trivial moderation policy that either cannot be undone, or is
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not being undone (i.e., the case of a naive DM with complete disagreement), has a strictly

negative welfare effect. Possibilities for beneficial moderation turn into instances where a

DM’s utility is reduced, despite aligned preferences. Similarly for the comparison across

types, rather than sophistication allowing for more instances where a DM can be helped,

it facilitates more situations where a well-intentioned moderation policy proves harmful.

And more beneficial interventions for naive types become more destructive. Nevertheless,

the analysis presented here might prove useful to distinguish these cases.

State dependent misperception. Misperception is described throughout as an inaccurate

view of the information experiment, meaning the DM is under the impression they face

an experiment X d , rather than X . While this can arise from a subjective probability

assessment, it might also be directly related to how a realized state affects perception. For

example, a patient might conduct a medical test perfectly if healthy, but fails to accurately

follow instructions when sick, possibly due to reduced cognitive performance.20 Misper-

ception becomes state-dependent. Since no restriction was placed on d that would rule-out

such forms of misperception, our analysis includes this case. Even though Blackwell

garbling - and thus by extension a moderation policy - is state independent, it can be em-

ployed to improve upon state-dependent errors. For more specific applications, modelling

misperception explicitly might provide additional structure that allows for further insight.

For example, as in the medical example, it is entirely plausible that in some contexts X d

and X fully coincide for all but one state. The moderator might then want to garble signals

if a particular state is sufficiently likely. This could potentially be exploited to derive results

more specific to the application.

Preferences vs. beliefs. We identified and characterized settings in which a moderator

would want to misinform a decision maker. Even small differences in prior and/or the

perception of an information experiment can lead to complete disagreement, meaning the

moderator and decision maker hold an opposing view on which action should follow which

signal. To an outside observer, this might look like the two parties have opposing interests.

But as shown, this can be caused by differences in how new information is interpreted. As

demonstrated in Example 1.1, interactions may appear/become strategic despite identical

preferences. This raises the question whether a distinction between the underlying causes

is even necessary. We want to highlight, though, that despite the observationally similar

consequences, policy implications can differ. A policy maker interested in the Welfare of a

(rational) decision maker would want to implement mechanisms that maximize the amount

of information that is released. The role of an expert is merely to administer the test. In the

presence of biases and misperception, on the other hand, full disclosure is not necessar-

ily the optimal policy and discretion should be left to the expert. Furthermore, despite the

20We thank an anonymous referee for this suggestion.
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overlap, the settings are not entirely equivalent. If beliefs are observed, the conditions for

complete disagreement allow for the possibility to distinguish when a specific moderation

policy could not possibly be motivated by differences in perception alone.

From a more general perspective, this analysis also points to the danger of judging

individuals’ apparent information misperception. What might appear to one person as

an irrational choice could simply be based on slight heterogeneity in how information is

perceived, especially in more complex settings with more than two states. From a modelling

perspective, reducing problems to a binary setting can (potentially) lead to incorrect

inference, even if some states are payoff equivalent, as in Example 3.1.

Interaction of biases and misperception. Outside of the strategic interpretation, this analy-

sis also sheds light on how biases and perception mistakes interact in non-monotone ways.

A bias in prior pushes the decision maker to an alternative course of action. While subop-

timal in a perfect world, this can mitigate some of the negative impact of misperception;

either because the alternative is less sensitive to (incorrectly perceived) information, or be-

cause misperception acts as beneficial moderation. Reconsider Example 3.1, which demon-

strates how a biased prior can lead to the choice of an action profile that, evaluated at the

true prior, is strictly worse than choosing either of its actions independent of the signal.

Adding any misperception that sufficiently reduces the signal strength has a positive im-

pact.21 Alternatively, imagine a decision maker who sometimes erroneously perceives one

signal for another, possibly through incorrect recall, or a perception error as in Rabin and

Schrag (1999), where a conformation bias is modelled in this way. Such an error effectively

acts as a form of moderation. So if there exists a beneficial moderation policy, there also

exist a beneficial, signal-swapping error. Furthermore, under complete disagreement, any

such error is strictly beneficial, even if it just amounts to additional white-noise. And a DM

unaware of such errors can be better-off than one who factors them in. Section C.2 in the

Online Appendix discusses this more formally. In this context, rather than being a more

knowledgeable expert, the moderator could be seen as a metaphor for a cognitive error that

alleviates existing biases and distortions.

6 Conclusion

We analyzed the effects of two fundamental mistakes in information processing and how

they can be mitigated by a moderator who has a better understanding of the information

environment (i.e., does not suffer from any mistakes). Even though preferences between this

moderator and the decision maker are assumed to be fully aligned, a decision maker can be

21Indeed, an earlier version of this paper focused on these topics in more detail. Example 5.1 in the Online
Appendix, which documents how biases and distortions introduce non-convexities, is the typical case where
a bias in prior mitigates the downsides from distorted perception.
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better-off if information is garbled and destroyed. Furthermore, the knowledge about such

garbling can have an heterogeneous impact on the DM’s welfare. Even though the analysis is

phrased as a strategic communication problem, it equally highlights non-monotonicities in

the interaction of biases in prior with perception mistakes. The results thus also characterize

when adding or intensifying biases and misperception can have a positive impact rather

than a ‘double whammy’ effect.

A Additional Results

A.1 Complete disagreement

Lemma 3. Suppose given an action profile a, the DM and moderator are in complete dis-

agreement over some ai and a j . Then the moderator prefers ai! j and a j!i to a.

Proof. WLOG, let V (X |ai! j ,µ) ∏ V (X |a j!i ,µ). Complete disagreement over ai and a j re-

quires that

V (X |ai$ j ,µ) >V (X |a,µ).

Together they imply E
£
u(ai |!)|µ(s j )

§
> E

£
u(a j |!)|µ(s j )

§
, and hence V (X |ai! j ,µ) >

V (X |a,µ). Moreover, again by definition of complete disagreement,

V (X |ai$ j ,µ) > max
©
V (X |ai! j ,µ),V (X |a j!i ,µ)

™
.

It follows that E
£
u(a j |!)|µ(si )

§
> E

£
u(ai |!)|µ(si )

§
, and thus V (X |a j!i ,µ) > V (X |a,µ), as

required.

Lemma 4. Let |≠| > 2. For any signal s from an experiment X , there (i) exist a pair of distinct

prior beliefs µ, p 2 ¢(≠) such that sign(µ!(s)°µ!) 6= sign(p!(s)° p!) for any non-extreme

state !, i.e., ! › argmin!0 s!0 and ! › argmax!0 s!0 . Indeed, (ii) for any ≤> 0, there exists such

a such pair of beliefs with ||µ° p|| < ≤. Furthermore, (iii) such a pair of beliefs exists with

µ! = p!.

Proof. Denote the states for which signal s is least and most informative by l ¥ argmin!0 s!0

and h ¥ argmax!0 s!0 . Wlog, assume these two states are unique for notational convenience.

Let≠° ¥≠\ {h, l }.

We start by first showing part (i) of the lemma as it generates a useful condition even

though (ii) implies (i). For any state ! 2 ≠°, the decision maker updates upwards if and

only if µ!(s) = µ!·s!
hs,µi >µ!, which is true whenever the likelihood of the signal in state !, s!,
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exceeds the likelihood of receiving s. Rewrite this inequality as

s! >µ!s!+µh sh +µl sl +
X

!02≠°\!
µ!0s!0 (9)

0 >µh · (sh ° s!)°µl · (s!° sl )+
X

!02≠°\!
µ!0 · (s!0 ° s!)

Settingµ!0 = 0 for all !0 2≠°\!, the RHS becomesµh · (sh ° s!)°µl · (s!° sl ) and so the DM

updates upwards if

µl

µh
> sh ° s!

s!° sl
(10)

and downward otherwise. As the relative signal ratio sh°s!
s!°sl

is a positive finite number, there

always exist a pair of prior beliefs µ, p with sufficient weights on state h and l such that one

prior belief ratio exceeds it and the other falls short of it. Note, this inequality can be used to

directly check the direction of updating with 3-states.22

(ii) To show that this can be true for two arbitrarily close prior beliefs, we first find a prior

belief q̂ for which inequality (9) is an equality. Since, sh > s! > sl , such q̂ exists, i.e., s! =
q̂h sh + q̂h sl , and which places probability 0 on all other states. But then, a strictly positive

prior q also exists. To obtain, µ and p that are arbitrarily close, simply shift a sufficiently

small probability from state h to l and from l to h respectively.

(iii) It is easily verified that the result goes through with the additional restriction µ! = p!.

A.2 Belief space & orientation

Lemma 5 provides an equivalent but potentially more intuitive definition of ‘opposing ori-

entation’, when the vector space is R2. This only requires the comparison of the sign of the

determinant of the relevant matrices constructed from the vectors in coordinate form.

Lemma 5. Let v , w , and x be vectors in R2. Then v and w have opposing orientation relative

to x if and only if the matrices

A =

0
BBBB@

| |

x v

| |

1
CCCCA

B =

0
BBBB@

| |

x w

| |

1
CCCCA

are such that det(A) < 0 < det(B), or det(B) < 0 < det(A).
22While this part of the proof only relies on the prior for two states, it obviously extends to strictly positive prior

beliefs (see also part (ii)). To see this, note that shifting any weighs from the prior of states with s!0 > s! to
those with s!00 < s! lowers the RHS (and vice versa for states with relatively lower signal strength).
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Proof. Opposing orientation requires that the sets {x , v } and {x , w } both are a basis and there

exists a matrix L with {x , w } = {Lx ,Lv } and det(L) < 0. As a basis, they span R2 and det(A) 6= 0

and det(B) 6= 0. It follows from the product rule of determinants that this can hold if and

only if sign(det(A)) =°sign(det(B)). The result follows.

Using this, we establish the necessity and sufficiency of the opposing orientation prop-

erty of three sets of vectors for the possibility of complete disagreement in R2 (i.e., when

the belief space is 2-dimensional). The three different comparisons are needed as they cor-

respond to different possibilities of lines separating the beliefs µ(si ) and p(sd
j ) from µ(s j )

and p(sd
i ). If such a separating line exists, then there are preferences with an indifference

curve coinciding with that line that yield complete disagreement. Intuitively, misperception

and/or a bias in prior needs to induce a belief update that is orthogonal and in an oppos-

ing direction for both signals in order to allow for complete disagreement. To stress this,

Proposition 6 phrases the opposing orientation property in terms of an orthogonal vector,

and subsequently shows the equivalence of this formulation with the notion in Definition 5.

Let vi and wi for all i 2 {0,1,2} be distinct vectors in a 2-dimensional Euclidean space.

Let Vi and Wi for all i 2 {0,1,2} denote the corresponding points. Suppose the vectors are

such that V0 lies on the line segment V1V2 (i.e., v0 is a convex combination of v1 and v2), W0

lies on the line segment W1W2, but not all points lie on a single line. Furthermore, suppose

without loss that v0 = 0. If that wasn’t the case, we could apply a translation vector °v0.

Further define ¢v1 ¥ v1 °w0, ¢v2 ¥ v1 °w0, and ¢w1 ¥ w1 °w0, as well as ¢w2 ¥ w1 °w0.

Proposition 6 (Vector Orientation). The line segments V1W2 and V2W1 do not cross if and

only if there exists a1, a2 2R, b1 < 0 < b2, and a vector u such that at least one of the following

holds:

(i) hu, v1i= 0, while w1 = a1v1 +b1u, and w2 = a2v1 +b2u, or

(ii) hu,¢w1i= 0, while ¢v2 = a1¢w1 +b1u, and ¢v1 = a2¢w1 +b2u, or

(iii) hu, w0i= 0, while w1 = a1w0 +b1u, and v1 = a2w0 +b2u.

Proof. Sufficiency:

First note that the line segment V1W2 can be characterized by the set of points P1 =
©
V1 +

∏(w2°v1)|∏ 2 [0,1]
™
, while the line segment V2W1 can be characterized by P2 =

©
V2+∏(w1°

v2)|∏ 2 [0,1]
™
. Now suppose indeed that a vector u exists, so that (i) holds. We can construct

matrices A and B such that:

A =

0
BBBB@

| |

v1 w1

| |

1
CCCCA

B =

0
BBBB@

| |

v1 w2

| |

1
CCCCA
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where

v1 =

0
@v1,1

v2,1

1
A u =

0
@u1

u2

1
A wi =

0
@ai v1,1 +bi u1

ai v2,1 +bi u2

1
A .

We can compute det(A) = b1(v1,1u2°v2,1u1), and det(B) = b2(v1,1u2°v2,1u1). As b1 < 0 < b2,

det(A) and det(B) are of opposing sign. They thus describe linear maps of different ori-

entation (Lemma 5). Consequently, the cross products v1 £ w1 and v1 £ w2 have oppo-

site signs (i.e., point to opposite sides relative to v1). Since V0 lies on a line between V1

and V2, and as v0 = 0, v1 and v2 are linearly dependent and we can write v2 = °∑v1 for

some ∑ 2 R+ and accordingly V2 = V1 °∑v1. Note further that v1 £ (w2 ° v1) = v1 £w2 (i.e.,

translations along the direction of v1 cannot affect the sign). Furthermore, v1 £ (w1 ° v2) =
v1£(w1+∑v1), which then again must have the same sign as v1£w1. We can further writeP2

as
©
V1°∑v1+∏(w1°v2)|∏ 2 [0,1]

™
. As V1 6=V2, and hence ∑ 6= 0, and as (w1°v2) and (w2°v1)

point in opposite directions relative to v1, the sets P1 and P2 describing the line segments

V1W2 and V2W1 are necessarily disjoint, i.e., the line segments cannot cross. As the naming

of vectors was arbitrary and the statements are symmetric, sufficiency of (ii) follows.

Next we prove sufficiency of (iii): Suppose such a u exists. Again note that we can write

v2 = °∑v1 for some ∑ > 0. We can thus write v2 = a3w0 +b3u, where b3 < 0 (i.e., the same

sign as b1). Construct the matrices

C =

0
BBBB@

| |

w0 w1

| |

1
CCCCA

D =

0
BBBB@

| |

w0 v2

| |

1
CCCCA

.

Computing the determinants, we can conclude that sign(det(C )) = sign(det(D)). But then

the cross products w0£w1 and w0£v2 have the same sign (i.e., point to the same side relative

to w0). As W0 lies on a line strictly between W1 and W2, the vectors w1 and w2 must have the

opposing orientation relative to w0. It follows that the cross products w0£w2 must have the

opposing sign of w0£w1. Furthermore, using again v2 =°∑v1, we can establish that w0£v1

must have the opposing sign of w0 £ v2. It follows that w0 £ v1 and w0 £ w2 also have the

same sign, but the opposite sign compared to the previous two cross products. Furthermore,

w0 £w2 = w0 £ (w2 °w0) and w0 £w1 = w0 £ (w1 °w0) (i.e., a translation along w0 cannot

change the sign of the cross product). This implies V1 and W2 lie on the same side of the line

segment V0W0, while V2 and W1 both lie on the opposite side. Sets P1 and P2 are disjoint as

required.

Necessity:

We prove the contrapositive. Suppose (i), (ii), and (iii) are not satisfied. Using the previous

argument, it follows from the violation of (iii) that V1 and W1 must lie on the same side

of the line segment V0W0, with V2 and W2 both on the opposite side. Then either (a) the

line segments V1W1, W1W2, V2W2, and V1V2 form the edges of a quadrilateral. Or (b), the
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line segments V1W1, W1V2, V2W2, and V1W2 form the edges of a quadrilateral (see Figure 10

for illustration). But note that (b) requires that W1 and W2 lie on opposite sides of the line

through V1 and V2. This would require that for any u with hu, vi= 0, we can find a1, a2,b1,b2

such that w1°v2 = a1v1+b1u and w2°v1 = a2v1+b2u, with b2 the opposite sign of b1. But

this would mean (i) is satisfied. A contradiction. Hence the edges (a) form a quadrilateral.

It follows further from the violation of (ii) that relative to ¢w1, vectors w1 ° v2 and w2 ° v1

must have the same orientation. This implies that V1 and V2 lie on the same side of the

line segment W1W2. We can conclude that the line segments V1W1, W1W2, V2W2, and V1V2

form the edges of a convex quadrilateral. It then follows from the Crossbar Theorem that the

diagonals V1W2 and V2W1 cross as required.

V0 W0

V1 W1

V2 W2

(a)

V0 W0

V1 W1

W2 V2

(b)

Figure 10: This illustrates the relevant quadrilaterals. In (a), the diagonals V1W2 and V2W1 cross.
In (b), the vectors corresponding to the line segments V1W1 and V1W2 have opposing orientation
relative to the vector corresponding to V1V0, which leads to a contradiction.

A.3 Complete Disagreement & Blackwell-ordered Misperception

Complete disagreement does not just arise if actual and perceived experiments are difficult

to compare, but even if the DM’s distorted view is simply a noisier, garbled version of the

original experiment, meaning X and X d are strictly Blackwell-ordered. Furthermore, with

rank(X ) ∏ 3, complete disagreement for such experiments is possible even without a bias

in prior. Example 4.1 demonstrates a specific instance, and Proposition 7 provides a formal

treatment.

Example 4.1. Let there be three states, {!1,!2,!3}, and three signals, {s1, s2, s3}, with the

following signal likelihoods:

s1 =

0
BBBB@

0.8

0

0.2

1
CCCCA

s2 =

0
BBBB@

0.2

0.8

0

1
CCCCA

s3 =

0
BBBB@

0

0.2

0.8

1
CCCCA

X =

0
BBBB@

| | |

s1 s2 s3

| | |

1
CCCCA

.

The DM and moderator have the same prior belief, which views each state as equally likely.

The DM’s distorted view of the experiment, X d , is a garbled version of the original experi-
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µ1

µ2

µ3

pd
1

pd
2

pd
3

!1 !2

!3

aH
aN

µ= p

Figure 11: Complete disagreement for a distorted experiment X d that is strictly nosier than X .

ment, i.e., X d = XG . In particular

X d =

0
BBBB@

0.56 0.38 0.06

0.06 0.56 0.38

0.38 0.06 0.56

1
CCCCA

, G =

0
BBBB@

0.7 0.3 0

0 0.7 0.3

0.3 0 0.7

1
CCCCA

.

Finally, there are two actions, aH and aN , with payoffs u(aH |!1) = 1.7, u(aH |!2) = 0,

u(aH |!3) = 0.35, and u(aN |!1) = u(aN |!3) = 0, u(aN |!2) = 1. ¶
Figure 11 depicts the example graphically. Due to the garbling of X , the DM’s posteriors

are less extreme. Moreover, the pairwise garbling of G results in posteriors for the DM that

are a convex combination of the two respective posteriors of the moderator. Since aH is

preferred at µ3 and pd
2 while aN is preferred at µ2 and pd

3 , there is complete disagreement

between the DM and moderator after signal s2 and s3.

Proposition 7. Suppose X is an n £k matrix with full rank, p = µ, and beliefs satisfy non-

reversal.

• If k = 2, there exists no garbling matrix G with X d = XG, such that there is complete

disagreement.

• If k ∏ 3, there exists preferences and a garbling G with X d = XG such that there is com-

plete disagreement.

Proof. Suppose k = 2. Full rank of X implies n = 2. It follows from Proposition 2 that there

can be no disagreement as beliefs satisfy non-reversal.

Now suppose k ∏ 3. Consider the (sub)-set of signals Ŝ = {s1, s2, s3} µ SX . Let µ(Ŝ) be the

intermediate belief, given that one of the three signals has occurred. Let vi denote the vector

in coordinate form corresponding to µ(si )°µ(Ŝ), given a basis
©
µ(s1)°µ(Ŝ),µ(s2)°µ(Ŝ)

™
.
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The full-rank assumption ensures that µ(s3)°µ(Ŝ) can be expressed as a coordinate vector

relative to this basis, while Bayes’ consistency implies that v3 < 0.

Construct a row-stochastic matrix G as follows: G equals the identity matrix except g3,2 >
0 (and g3,3 = 1° g3,2), as well as g2,1 > 0 (and g2,2 = 1° g2,1). Denote the garbled signals by

sd
1 , sd

2 , and sd
3 respectively. As X has full rank and X d is a garbling of X with only signals

in Ŝ affected, we can conclude that µ(Ŝ) = p(Ŝ). It follows further that the vectors µ(s1)°
µ(Ŝ) and µ(s2)°µ(Ŝ) span the corresponding belief space, which is two-dimensional. We

can express the vectors p(sd
i )°µ(Ŝ) as coordinate vectors {wi }3

i=1 relative to the same basis
©
µ(s1)°µ(Ŝ),µ(s2)°µ(Ŝ)

™
.

Observe that by construction w1 > 0. Furthermore, as v3 < 0 and w2 is a convex combi-

nation of v2 and v3, we have that w2 < v2, with the first coordinate strictly negative. Finally,

w3 = v3 as µ(s3) = p(sd
3 ). Again by construction, p(sd

1 ) and p(sd
2 ) lie on the boundary of the

convex hull of {µ(si )}3
i=1. However, as w1 > 0 while w2 < v2, any convex combination of the

two must lie strictly inside the convex hull. Let pd
1,2 be the intermediate belief knowing that

either sd
1 or sd

2 has occurred. This is such a convex combination and thus lies strictly inside

the convex hull of {µ(si )}3
i=1. Denote the corresponding vector by w0. Let ¢v1 ¥ v1 ° w0,

¢v2 ¥ v2°w0 and ¢w1 ¥ w1°w0. By construction, ¢w1 is a (non-degenerate) convex com-

bination between ¢v1 and ¢v2. This implies that ¢v1 and ¢v2 must have the opposing

orientation property relative to ¢w1. The result then follows from Proposition 6.

B Proofs

B.1 Beneficial moderation

Proof of Theorem 1. Any moderation policy for an experiment X can be expressed by a k£k

garbling matrix M . By definition, M is row-stochastic. The moderated signals correspond

to the experiment X m = X M . Let sm
i denoted the i -th column of this experiment. Applying

Bayes’ rule, we can verify that this moderated signal leads to a posterior qi =
Pk

j µ(s j )m j i hµ,s j i
Pk

j=1 m j i hµ,s j i
.

It follows from Bayes’ consistency that the (ex-ante) probability of receiving such a signal

sm
i equals ºi =

Pk
j=1 m j i hµ, s j i. Now note that the belief qi can be equally expressed as a

convex combination of the posteriors
©
µ(s j )

™k
j=1. This yields convex weights that can be

denoted by a column vector wi = (w1i , ..., wki ). By inspection, this is only consistent with a

garbling of signals and the corresponding ex-ante probabilityºi if w j i =
m j i hµ,s j iPk

j=1 m j i hµ,s j i
. Note

that these relations hold as an identity. Transferring this argument to the perspective of the

DM yields the corresponding weights w d
i = (w d

1i , ..., w d
ki ) with w d

j i =
m j i hp ,sd

j iPk
j=1 m j i hp ,sd

j i
.

For the remaining result, we distinguish between naive and sophisticated DMs.

Naive: Since a naive DM does not adjust choices, signal sm
i is followed by action ai . The
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expected utility from the perspective of the moderator of any moderation policy equals
Pk

i=1
Pk

j=1 m j i hµ, si i ·U (ai |µ(s j )). It follows from linearity as well as the previous argument

that this can be equivalently expressed as
Pk

i=1ºi ·U (ai |qi ), where qi is the posterior belief

corresponding to sm
i . Clearly, this is only beneficial if it is larger than V (X |a,µ). Necessity

follows immediately, noting that any moderation policy must be expressible as a garbling.

Sophisticated: The argument follows analogous to the naive DM, except that after signal

sd .m
i (i.e., the i -th column of the moderated, distorted experiment X d M), a sophisticated

DM chooses an action â such that â = argmaxa2A{U (a|p(sd .m
i )}. Equations 7 and 8, and

the definition of sender-preferred equilibrium, yield an expression for the expected utility

(from the perspective of the moderator) of
Pk

i=1ºi ·U (C (w d
i )|qi ). The remaining argument

corresponds to the one for the naive.

Proposition 8. For every set of beliefs {qi }k
i=1 Ω Q and probability vector ºi = (º1, ...,ºk )

with
Pk

i ºi qi = µ, there exists a row-stochastic matrix M =
°
mi j

¢
1∑i , j∑k and an action pro-

file a = (a1, ...ak ) such that qi =
Pk

j µ(s j )m j i hµ,s j i
Pk

j=1 m j i hµ,s j i
, and ai 2 argmaxa2A U (a|pi ) with pi =

Pk
j p(sd

j )m j i hp ,sd
j iPk

j=1 m j i hp ,sd
j i

.

Proof. Let X̂ be the experiment corresponding to the posterior beliefs
©

qi
™k

i=1. Any qi 2 Q

is by definition a convex combination of posterior beliefs
©
µ(s j )

™k
j=1. It follows that X̂ is

(weakly) less Blackwell-informative than X and there exists a garbling matrix M such that

X̂ = X M (see Theorem 12.2.2., Blackwell and Girshick (1954)). It then follows from Theorem

1 that the posterior beliefs can be written as proposed. The chosen action follows directly

from the DM’s utility maximization problem.

Proof of Lemma 1. Naive DM - sufficiency: For a naive DM, the policy m(s j ) = si , and m

equal to the identity mapping for all other sl 2 SX , achieves an expected utility of

V (X m |a,µ) =
kX

l=1
hµ, sm

l i ·E
£
u(al |!)|µ(sm

l )
§

=
lX

l 6=i , j
hµ, sl i ·E

£
u(al |!)|µ(sl )

§
+ hµ, si + s j i ·E

£
u(ai |!)|µi j

§

where we used that sm
j = 0, and sm

i = si + s j . It follows from linearity of expectations and

Bayes’ consistency that

hµ, si + s j i ·E
£
u(ai |!)|µi j

§
= hµ, si i ·E

£
u(ai |!)|µ(si )

§
+ hµ, s j i ·E

£
u(ai |!)|µ(s j )

§
.

As ai! j is preferred to a, we conclude that V (X m |a,µ) = V (X |ai! j ,µ) > V (X |a,µ) as

required.

Naive DM - necessity: Suppose there exists such a moderation policy. Then there exists a
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signal s j 2 SX with m(s j ) =Pk
l=1 pl sl , where all pl 2 [0,1] and

Pk
l=1 pl = 1. As m is non-trivial,

pi > 0 for some i 6= j . For this to increase expected utility, there must be at least some i 6= j

with E [u(ai |!)|µ(s j )] > E [u(a j |!)|µ(s j )]. But then ai! j must be preferred to a.

Sophisticated DM - sufficiency: Consider a policy m(s j ) = ≤ · si + (1 ° ≤)s j and m equal

to the identity mapping for all other signals. This achieves expected utility equal to:

V (X m |a,µ) =
kX

l 6=i , j
hµ, sl i ·E

£
u(al |!)|µ(sl )

§

+ hµ, si +≤ · s j i ·E
£
u(a§|!)|µ(sm

i )
§
+ hµ, (1°≤)s j i ·E

£
u(a j |!)|µ(s j )

§

where a§ is the DM’s choice after sm
i , i.e., at p(sm

i ). Note that for ≤ ! 0, sm
i ! si . Then

generically (ai being strictly preferred after si ), for small enough ≤, continuity ensures that

a§ = ai , and due to linearity of expected utility,

E
£
u(ai |!)|µ(sm

i )
§
= (1°∞)E

£
u(ai |!)|µ(si )

§
+∞ ·E

£
u(ai |!)|µ(s j )

§
,

where 1°∞ = hµ,si i
hµ,si+≤·s j i . Since ai! j is preferred to a, E [u(ai |!)|µ(s j )] > E [u(a j |!)|µ(s j )],

which means this m strictly increases expected utility.

B.2 Moderation & the gain from information

Lemma 6 briefly justifies the relevance of the binary perspective in the context of utility

maximization.

Lemma 6. If the (conditional) gain from X4(si , s j ) for some action profile a is negative atµi j ,

then a does not maximize expected utility at µ.

Proof. An action profile a maximizes expected utility at µ if V (X |a,µ) ∏ V (X |a 0,µ) for all

a 0 2A|SX |. Write V (X |a,µ) as:

V (X |a,µ) =
X

s2SX

hµ, si ·E
£
u(as |!)|µ(s)

§
=

X

s2SX \{si ,s j }
hµ, si ·E

£
u(as |!)|µ(s)

§

+ [hµ, si i+ hµ, s j i] ·V
°
X4(si , s j )|a,µi j

¢

where the last equality follows from the definition of V and Bayes’ consistency. If

V (X4(si , s j )|a,µi j ) < E [u(a|!)|µi j ] for some a 2A, then replacing ai and a j with a strictly

increases expected utility. The equivalent result for the conditional gain can be obtained by

replacing a with a§ = argmaxa2{ai ,a j } E [u(a|!)|µi j ].

Proof of Proposition 1. Let a be the chosen action profile. We start with the naive DM.

Sufficiency: Suppose such signals si , s j exist. Then, V (X4(si , s j )|a,µi j )°E [u(a j |!)|µi j ] < 0,

where we assumed wlog that a j is the preferred action at µi j . It follows from Bayes’
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consistency and linearity that V (X4(si , s j )|a j!i ,µi j ) = E [u(a j |!)|µi j ], Using the argument

from Lemma 6, we can conclude the moderator prefers a j!i to a. It follows from Lemma 1

that a beneficial moderation policy exists.

Necessity: Suppose the moderator chooses a non-trivial moderation policy. Then

again using Lemma 1, there must be actions ai , a j that are part of a such that a j!i

is preferred to a. As the action profile a j!i is constant for signals si and s j , we have

V (X4(si , s j )|a j!i ,µi j ) = E [u(a j |!)|µi j ]. As E [u(a j |!)|µ(s j )] is unchanged, it must be that

E [u(ai |!)|µ(si )] < E [u(a j |!)|µ(si )] and hence V (X4(si , s j )|a j!i ,µi j ) >V (X4(si , s j )|a,µi j ).

Given a, the conditional gain from X4(si , s j ) is negative at µi j .

We continue with the sophisticated DM. Sufficiency: Let si , s j 2 SX be such signals. By

definition there exists a§ 2 A, such that E [u(a§|!)|µi j ] > V (X4(si , s j )|a,µi j ). As follows

from Lemma 6, a cannot be optimal and replacing ai , a j with a§ achieves strictly higher

expected utility. Now consider a moderation policy with m(si ) = m(s j ) = s j . By Bayes’ rule,

p
°
sd .m

j

¢
= pi j . As a§ maximizes expected utility at pi j , a sophisticated DM chooses a§ after

observing sd .m
j . A beneficial moderation policy exists.

Proof of Corollary 1.1. This follows from the necessity argument in Proposition 1. For ben-

eficial moderation to exist, there must be some actions ai , a j that are part of a = (a1, ..., ak ),

such that V (X4(si , s j )|a j!i ,µi j ) > V (X4(si , s j )|a,µi j ). Then m(si ) = s j achieves higher ex-

pected utility than any non-deterministic moderation policy, unless there is another al that

dominates a j at µ(si ). But then the optimal policy has m(si ) = sl . With countable actions,

the maximum is generically unique. Iterating this over all ai gives the desired result.

Proof of Proposition 2. Let m be a deterministic moderation policy given an experiment X

with signals SX = {s1, ..., sk }. Let µ(sm
i ) denote the posterior belief for some sm

i that occurs

with positive probability. Furthermore, let Si
X µ SX denote the subset that includes all sig-

nals in SX that are mapped into si (i.e., all sl 2 SX with m(sl ) = si ). As m is deterministic, sm
i

can be written as sm
i =P

s2Si
X

s. Following Bayes’ rule:

µ(sm
i ) =

sm
i ±µ

hsm
i ,µi .

Noting that all sm
l with sl 2 Si

X (i.e., all signals that are mapped into si ) are perceived by the

DM with probability 0 given m, the posterior µ(sm
i ) is reached with probability hsm

i ,µi, i.e.,

the ex-ante probability of sm
i being perceived by the DM.

Now consider an alternative moderation policy m̂ such that for all si 2 Si
X , m̂(si ) =

1
K

P
s2Si

X
s, where K = |Si

X |. Note that m̂(si ) = 1
K sm

i . It follows that

µ(sm̂
i ) =

1
K sm

i ±µ
h 1

K sm
i ,µi

=
sm

i ±µ
hsm

i ,µi =µ(sm
i ).
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Furthermore, µ(sm̂
i ) = µ(sm̂

l ) for all sl 2 Si
X . Each of these posteriors is generated with (ex-

ante) probability hsm̂
l ,µi= hsm̂

i ,µi= 1
K hsm

i ,µi. Henceµ(sm̂
i ) is perceived with (overall) prob-

ability K · hsm̂
i ,µi= hsm

i ,µi. Iterating over all distinct S j
X allows us to conclude that m̂ and m

generate the same distribution over posteriors and thus yield the same expected utility.

Example 1.2 provides a specific example where a non-deterministic policy achieves strictly

higher expected utility. This completes the proof.

Proof of Corollary 2.1. The optimal moderation policy for a naive DM must be determinis-

tic (Corollary 1.1). As E [u(ai |!)|µ(si )] ∏ E [u(a j |!)|µ(si )], it must be that E [u(ai |!)|µ(s j )] >
E [u(a j |!)|µ(s j )] for there to be beneficial moderation for a naive DM (Proposition 1). Oth-

erwise, the result follows trivially. If the optimal moderation policy for a naive DM is

non-trivial, then sm
i = si + s j . For a naive DM, this achieves expected utility of hµ, sm

i i ·
E [u(ai |!)|µ(sm

i )] = E [u(ai |!)|µ], where the last equality follows from Bayes’ consistency

since |SX | = 2. For the same moderation policy, expected utility for a sophisticated DM is

E [u(a§|!)|µ], where a§ = argmax
a2A

E [u(a|!)|µ].

Clearly, the sophisticated DM is weakly better-off.

Proof of Proposition 3. Trivially, ai needs to be suboptimal for there to exist a beneficial

moderation policy. Suppose now to the contrary that every suboptimal action part of a is

only consistent with an underestimation of signal strength (relative to any µi j ). Let ai be

such a suboptimal choice.

Naive DM: Compare ai to any a j , the choice after some signal s j . It follows from the premise

that a j must be either optimal or consistent with an underestimation. It is thus the optimal

choice for some belief in
©
Øµ(s j )+ (1 °Ø)µi j |Ø 2 [0,1]

™
. It then follows from linearity of

expected utility in beliefs that since ai = argmaxa2AE [u(a|!)|µÆ], for some Æ 2 [0,1) that

E [u(a j |!)|µ(si )] < E [u(ai |!)|µ(si )]. Equivalently, E [u(a j |!)|µ(s j )] > E [u(ai |!)|µ(s j )]. We

can conclude that the conditional gain from X atµi j must be positive. By Proposition 1 and

Corollary 1.1, there cannot be a beneficial moderation policy for a naive DM.

Sophisticated DM: For beneficial moderation, there needs to exist an action â 2A such that

E [u(â|!)|µ(si )] > E [u(ai |!)|µ(si )], and â = argmaxa2AE [u(a|!)|p(sd ,m
i )], where sd ,m

i is the

distorted signal after moderation. Furthermore, if ai is only consistent with an underestima-

tion of signal strength, then for every s j 2 SX with j 6= i , there exists an Æ j 2 [0,1] such that

ai = argmaxa2AE [u(a|!)|µÆ j ], where µÆ j =Æ jµ(si )+ (1°Æ j ) ·µi j . As expected utility is lin-

ear in beliefs, and as ai 6= argmaxa2AE [u(a|!)|µ(si )], we can find a (not necessarily unique)

set
©
µÆ j | j 6= i , j 2 {1, ...,k}

™
of such beliefs that all lie on a hyperplane in the belief simplex

¢n°1. By definition of µÆ, this hyperplane separates ¢n°1 in two subsets: one containing

µ(si ) and the other containing all other posteriors for signals in SX . Denote the former by

Bi and its complement by BC
i . By construction, both must be convex. For moderation to
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be beneficial, â must be optimal for some belief µ̂ 2 Bi , otherwise it would never be cho-

sen for any belief. By linearity, the set of beliefs for which â achieves higher expected utility

than ai must be a convex subset of Bi . Denote this by B̂i . Now note that for all sd
j 6= sd

i ,

by construction we have p(sd
j ) 62 Bi . This follows from the premise that all a j must be con-

sistent with an underestimation of signal strength at each µ j i . Linearity of expected utility

then implies that it cannot be that a j is optimal at some µ = Æµ(s j )+ (1°Æ) ·µ j i and at

some µ = Øµ(si )+ (1°Ø) ·µ j i , but not at some belief strictly in between. As any modera-

tion policy garbles signals, the resulting posterior beliefs of a sophisticated DM must be in

the convex hull of the set of distorted posteriors
©

p(sd
l )|sd

l 2 SX d

™
, which is denoted by P .

Since
©

p(sd
l )|sd

l 2 SX d

™
Ω BC

i and as BC
i is a convex set, we can conclude that B̂i \P =;. No

moderation policy can generate a belief p(sd ,m
i ) 2 B̂i that induces a choice â. No beneficial

moderation policy exists.

Proof of Corollary 3.1. Wlog, suppose that si .!
si .!0

> 1, noting that we assumed that at least one

signal must be informative. If the distortion is such that si .!
si .!0

∏ sd
i .!

sd
i .!0

∏ 1, then |µ!(si )°µ!|∏

|µ!(sd
i )°µ!|. As |≠| = 2, we can then write µ(sd

i ) = Æµ(si )+ (1°Æ)µ for some Æ 2 [0,1]. As

µ= p and hence µ(sd
i ) = p(sd

i ), the result follows from Proposition 3.

B.3 Complete disagreement

Proof of Lemma 2. Let©ª(ai , a j ) Ω¢n°1 be the set of beliefs for which the DM (and moder-

ator) is indifferent between ai and a j . Similarly, let ©+(ai , a j ) be the set of beliefs for which

the DM strictly prefers ai to a j . Since expected utility is linear in beliefs, expected utility

for each action a 2 A forms a hyperplane in Rn . The indifference set for any two actions

ai and a j is thus geometrically defined by the intersection of two such hyperplanes. This

means ©ª(ai , a j ) can be described by an indifference manifold in Rn (still referred to as a

curve). Linearity implies that this has dimension n °2 and is itself a hyperplane of the sim-

plex ¢n°1 ΩRn°1. Furthermore,©+(ai , a j ) is a subset of ¢n°1.

Now fix some experiment X , distortion d , and prior beliefs µ and p . For complete

disagreement over some ai and a j , there needs to exist signals si and s j , such that the

moderator strictly prefers a j after si , and ai after s j . Preferences need to be such that

µ(s j ), p(sd
i ) 2 ©+(ai , a j ), and µ(si ), p(sd

j ) 2 ©+(a j , ai ). By definition, these are disjoint and

separated by ©ª(ai , a j ). As these sets are convex, this can only be the case if the smallest

convex set containing µ(si ) and p(s
d
j ), i.e.,

©
µ 2¢n°1 :µ=Æ ·µ(si )+ (1°Æ) ·p(s

d
j ), Æ 2 [0,1]

™

is disjoint from the smallest convex set containing µ(s j ) and p(s
d
i ), which is

©
µ 2¢n°1 :µ=Æ ·µ(s j )+ (1°Æ) ·p(s

d
i ), Æ 2 [0,1]

™
.
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These are the line segments in question. If the line segments do not cross, then the sets are

disjoint. The hyperplane separation theorem then guarantees the existence of a separating

hyperplane in ¢n°1. Let this be ©ª(ai , a j ). The remaining subsets of ¢n°1 are disjoint and

convex. Let these be©+(ai , a j ) and©+(a j , ai ). It is easy to verify that preferences consistent

with these sets must exist. With these preferences, there is complete disagreement. If the

line segments cross, the sets are not disjoint. No separating hyperplane can exist, which

precludes the required preference relation.

Proof of Theorem 2. Case z = 1: If the belief space is 1-dimensional, then any two vectors

in the belief space are linearly dependent. The points µ(si ), µ(s j ) and p(sd
i ), p(sd

j ) all lie on

a line. Non-reversal guarantees that p(sd
j ) cannot lie between µ(si ) and p(sd

i ), and p(sd
i )

cannot lie betweenµ(s j ) and p(sd
j ). It follows from Lemma 2 that complete disagreement is

not possible, since the line segments betweenµ(si ), p(sd
j ) and p(sd

i ), µ(s j ) must necessarily

intersect/coincide.

Case z = 2: The result follows almost immediately from Proposition 6 (Vector Orientation).

Let L denote the belief space. If the belief space is 2-dimensional, it can be equivalently

represented in R2, i.e., there is an isomorphism A : L 7! R2. Note that such an isomorphism

is either orientation-preserving or reversing (Guillemin and Pollack, 1974, p. 96). This means

if two vectors have the opposing orientation property in L, this also holds in R2. Let Vi be the

point in R2 corresponding to µ(si ), Wi corresponding to p(sd
i ), and V0 (W0) corresponding

to µi j (pi j ). The result then follows from Proposition 6.

Case z = 3: If the belief space is 3-dimensional, thenµ(si ),µ(s j ) and p(sd
i ) lie on a plane that

does not contain p(sd
j ). The line segment betweenµ(si ) and p(sd

j ) cannot cross with the line

segment betweenµ(s j ) and p(sd
i ). It follows from Lemma 2 that there exist preferences such

that complete disagreement is possible.

Proof of Corollary 3.2. Following Theorem 2, complete disagreement is not possible if the

belief space for two signals is 1-dimensional. But with |≠| = 2, all beliefs are contained in¢1,

the 1-dimensional simplex. Any belief space thus has at most dimension 1.

Proof of Proposition 4. It follows from Lemma 3 that the moderator prefers ai! j to a. It

then follows directly from Lemma 1 that a beneficial moderation policy must exist for both

a naive and sophisticated DM.

Proof of Corollary 4.1. For a naive DM, the moderation policy m(si ) = s j and m(s j ) = si

achieves an expected utility of

V (X m |ai$ j ,µ) =V (X |ai$ j ,µ) =V (X |µ).

By definition, a sophisticated DM could at most achieve equal expected utility. Suppose

the sophisticated DM attains the same expected utility as the naive. Following Proposition
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2, if beneficial moderation is possible, there exists an optimal non-deterministic policy for

a sophisticated DM. Given the assumption on either ai or a j , it is wlog to assume that ai

is unique in {a1, ..., ak }. Suppose further that E [u(ai |!)|µ(s j )] < E [u(a j |!)|µ(s j )] for all j 2
1, ...,k, k 6= i . This is generically true if ai is unique in {a1, ..., ak }. If sm

j 6= 0, then optimality

requires that

ai = argmax
a2A

E [u(a|!)|p(sm
j )].

as well as sm
j = s j . This last equality follows from the fact that if ai is chosen after sm

j , any

mixture with another signal leads to a strict loss in expected utility relative to V (X |µ). This

is a contradiction, since m would have to be uniquely deterministic.

Suppose now sm
j = 0. Then using the previous argument, we need that

ai = argmax
a2A

E [u(a|!)|p(sm
k )].

with sm
k = s j , for some sk 6= s j . But this is again a contradiction. The result follows.

Proof of Corollary 4.2. Complete disagreement and |A| = 2 imply that V (X |µ) =
V (X |ai$ jµ). Furthermore, if |SX | = 2, then each action is necessarily unique in a. The

result follows from Corollary 4.1.

Proof of Proposition 5. Suppose si and s j are such signals. Let s̃i = si
si+s j

and equivalently

for s̃ j , i.e., they are the signals associated with X4(si , s j ). From Lemma 4, it follows that there

exist beliefs µi j and pi j (strictly inside ¢(≠)), such that sign
°
µ!(s̃i )°µ!) = °sign

°
p!(s̃i )°

p!
¢
, for some state ! 2≠ with µ!.i j = p!.i j . As the probabilities in each signal are distinct,

the belief space is at least 2-dimensional. If it is 3-dimensional, there exist preferences such

that there is complete disagreement (Theorem 2).

Suppose now it is 2-dimensional. As µ!.i j = p!.i j , it follows that the vectors vi =µ(si )°
µi j and wi = p(si )°pi j have opposing orientation relative to pi j °µi j . To see this, denote

¢x = pi j °µi j . Then ¢u! = 0, while any vector u that is orthogonal to pi j °µi j necessarily

has u! 6= 0. We can write vi as the linear combination vi = Æ1¢x +Ø1u, and equivalently

wi =Æ2¢x+Ø2u. As sign
°
µ!(s̃i )°µ!) =°sign

°
p!(s̃i )°p!

¢
, we have v!.i > 0 > w!.i or v!.i <

0 < w!.i . Accordingly, sign(Ø2) = °sign(Ø1). The result follows from Proposition 6, noting

that beliefs µ and p that lead to the conditional posteriors µi j and pi j for the two signals

necessarily exist, since the conditional beliefs are assumed to be strictly in the interior of

¢(≠).
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C Online Appendix

C.1 Distortions, biases and their implications

This section provides some additional depth to the observations made in Section 4.1,

namely that unbeknownst to the decision maker, biases and distortions introduce non-

convexities (in beliefs) in V (X |a§,µ) and thus alter the value and gain from experimenta-

tion. Consequently, the DM might fail to realise the full gain from an experiment either by

relying too much or too little on the outcome. A DM with (only) a bias in prior judges the

informativeness of signals correctly, but weighs them according to a different prior. This

can lead to equally distorted posteriors and thus have similar effects. Examples 5.1 and 5.2

illustrate this and Result A.1 offers a formal summary.

Example 5.1. Analogous to Example 1.1, suppose a patient was potentially exposed to an

infectious disease. The patient is either infected (!H ) or not (!L), and can immediately seek

treatment (aH ), or continue as usual (aL). To check for infection, the patient can perform

a diagnostic test, and react based on the outcome, i.e., a = (aH , aL). Of course, it is also

possible to ignore the test (which will be interpreted as not taking the test) and take either

action independent of the test outcome. Suppose the test provides informative but not fully

revealing signals s and t with sH = 0.75 = tL . Let u(aH |!H ) = 5 = u(aL|!L), and 0 otherwise.

It follows from the symmetry of payoffs that, if the test is taken, the patient performs action

aH or aL depending on whether the posterior belief after observing the result is greater or

smaller than 1
2 .

Figure 12 (a) illustrates the expected utility outcomes as a function of beliefs. Profiles

(aH , aH ) and (aL , aL) are optimal for more extreme prior beliefs as the information provided

by the test is not sufficient to move the posterior below/above 1
2 . If the patient is convinced

that they have been infected, it is best to start treatment without relying on the test. The

risk of a false-negative result outweighs the risk of unnecessary treatment. Equivalently, if

infection is very unlikely, it is best to continue as usual. For intermediate beliefs, the infor-

mation provided by a result is valuable as the gain from the test is strictly positive. As stated

in Result A.1, the maximum expected utility (bold line segments) is convex in µ0.

Suppose now the patient misjudges the accuracy of the test by underestimating the

chance of a false negative result and overestimating the probability of a false positive. In

particular, sH = 0.75 < sd
H = 0.85 and accordingly tH = 0.25 < t d

H = 0.15. Furthermore,

tL = 0.75 > t d
L = 0.65, and thus sL = 0.25 < sd

L = 0.35. The changes are such that the patient

underestimates the strength of a positive but overestimates that of a negative test result.

This (incorrectly) raises the perceived value of the test for higher prior beliefs. When infec-

tion is more likely, an accurate negative signal is valuable, since it affects the chosen action

and thus, in expectation, avoids unnecessary treatment. The patient would take the test for

a range of prior beliefs, where immediate treatment should be the preferred option. Conse-
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Figure 12: Expected utility of action profiles (Example 5.1)

quently, convexity of the true expected utility fails in regions where the information is only

perceived to be valuable (in the neighbourhood of µ0 = 0.8). Similarly, by overestimating the

probability of false positives, the test appears less valuable to the patient at prior beliefs that

put only small weight on a possible infection. There is a range of prior beliefs where the test

is not taken, despite being valuable (in the neighbourhood of µ0 = 0.29). Again, the utility

fails to be convex in that region. ¶

Suboptimal choices can also be caused by biases that affect the prior belief. Ifµ 6= p , then the

DM puts too much (little) weight on one of the states and thus (dis-)favours actions appro-

priate for that state. Moreover, signals are interpreted against this distorted prior, affecting

posterior beliefs. Interestingly, the consequences from such a ‘bias’ in prior are similar to

those of a distortion in signals. A key result from Alonso and Câmara (2016) (Proposition 1)

shows that for a given difference in priors, there exists a simple relation between posterior

beliefs that is independent of the information experiment. When applied in this context, it

can be shown that, from the perspective of the moderator, the utility frontier (as generated

by the choices of the DM) fails to be convex in beliefs. Similar to the case of signal distor-

tions, the DM (possibly) misjudges gain from an experiment.

Example 5.2. Suppose before taking the test, the patient fails to accurately assess the risk

of having been exposed to the disease. In particular, suppose the actual risk is lower than

the belief of the patient (1/5 =µ0 < p0 = 2/5). Then independent of the accuracy of any test, a

negative signal is less and a positive more surprising to the observer than the patient. For a

given change in belief of the patient, we can compute the implied signal that would yield this

belief. Using this signal, we can calculate the belief an observer would reach. This reveals

that - from the perspective of the observer - the expected utility of the patient fails to be

convex. And in fact, for a range of posterior beliefs, e.g., p(s) 2 (0.5,0.75) in Figure 13 (a), the

observer disagrees with the patient over which action should be taken. For an experiment

2
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Figure 13: Expected utility (Ex. 5.2) as a function of posterior beliefs of the patient from the perspec-
tive of an observer. A solid line indicate the preferred action of the patient at each p.

to be considered valuable by the observer at p = 2/5, it would need a higher accuracy. A

positive signal would need to induce a posterior belief of µ(s) > 1/2 in the observer. This is

not the case for the test in question. A similar situation is shown in Figure 13 (b), but here

the observer believes ex-ante that infection is more likely. Again, convexity in (posterior)

beliefs fails for some range, indicating a disagreement over the value of experiments. ¶

Result A.1 provides a formal summary of the previous discussions and highlights the shared

channel, through which biases and distortions negatively affect choices. Let V̂ (X d |p) de-

note the expected utility a DM with a given bias and distortion actually obtains. In par-

ticular, V̂ (X d |p) = V (X |a§,µ), where a§ is the choice the DM deems optimal (i.e., a§ =
argmaxa2A|SX | V (X d |a, p)).

Result A.1. For any X and prior µ, indirect utility V (X |µ) is convex in µ. Convexity of

V̂ (X d |p) in beliefs fails for at least some p if one of the following holds:

- a DM suffers from a non-trivial distortion (X d 6= X ),

- a DM holds a biased prior (µ 6= p).

Proof. Convexity in posterior beliefs: Expected utility E [u(a|!)|µ] is linear and hence weakly

convex in µ. The expected utility from each action as a function of µ can be seen as a hy-

perplane in ¢n°1. The maximum value from any experiment can also be written as a linear

function in µ:

V (X |µ) = max
a2A|SX |

X

si2SX

X

!2≠
hsi ,µiu(ai |!)

siµ!
hsi ,µi .

By the properties of the maximum, the combination of hyperplanes that achieve maximum

expected utility is necessarily convex in µ.

Non-convexity from distortions: We will prove non-convexity by showing that any non-trivial

X d generates a discontinuity in V̂ (X d |µ) at some µ§.

3



Recall that A is assumed to be such that actions are not payoff equivalent. Then for any

non-trivial experiment, distortion, and signal-sensitive a, we have V (X d |a,µ) 6= V (X |a,µ),

i.e., the perceived value from X d differ from the true ones. Let a§ be such that a§ =
argmaxa2Au(a|!) for some ! 2 ≠. It follows from linearity of V in beliefs for a given ac-

tion profile that for any non-trivial X d , there exists a signal sensitive profile a, i.e., not

all actions in the action profile are identical, and a belief µ§ that is extreme enough so

that the constant action a§ is such that E [u(a§|!)|µ§] = V (X d |µ§) = V (X d |a,µ§), while

V (X d |a,µ§) 6= V (X |a,µ§). In other words, µ§ is a belief at which the DM is just indiffer-

ent between the constant action a§ and some signal sensitive profile. Note that given the

assumption that no single action is optimal for all states, such a belief µ§ necessarily exists

if X 6= X d . As V is continuous in beliefs, and as X is not fully informative, for any ≤ > 0, we

can find µ≤ 6=µ§ with ||µ≤°µ§|| < ≤, such that V (X d |µ≤) = E [u(a§|!)|µ≤]. As the action pro-

file chosen at this belief is not signal sensitive, we have V̂ (X d |µ≤) = V (X d |µ≤). At the same

time, we can find µ0
≤ with ||µ0

≤°µ§|| < ≤ such that V (X d |µ0
≤) = V (X d |a,µ0

≤) > E [u(a§|!)|µ≤].
As V (X |a,µ§) 6= V (X d |a,µ§) it follows that lim≤!0 V̂ (X d |µ0

≤) 6= lim≤!0 V̂ (X d |µ≤). There is a

discontinuity at µ§. Convexity in µ (and hence p) necessarily fails.

Non-convexity from biased prior:

Take an arbitrary experiment X with signals SX . It follows from Alonso and Câmara (2016)

[Proposition 1] that the posteriors between moderator and DM can be related as follows:

p!(si ) · hµ(si ), p ±µ°1i=µ!(si ) · p!
µ!

where p ±µ°1 =
°p!
µ!

¢
!2≠. Let!§ be such that p!§

µ!§
= min

n
p!
µ!

|! 2≠
o

. LetÆ1, ...,Æk be weights

such that
Pk

i=1Æiµ!(si ) = µ. These correspond to the probabilities with which each signal

in SX is observed from the perspective of the moderator. We can write:

X

i
Æi p!§(si )hµ(si ), p ±µ°1i= p!§

µ!§

X

i
Æiµ!§(si ). (11)

Observe that
P
!2≠µ!(si ) = 1. It follows that for all si 2 SX :

X

!2≠
µ!(si )

p!
µ!

> p!§

µ!§
.

Note that the left-hand side equals hµ(si ), p ±µ°1i. Define

∑i ¥ hµ(si ), p ±µ°1i · µ!
§

p!§

and note that ∑i > 1 for all i 2 {1, ...k}. Substituting this into (11), we we obtain:

X

i
Æi p!§(si ) ·∑i =

X

i
Æiµ!§(si ).
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For convexity to hold from the perspective of the moderator for any X , we require
P

i Æi p!§(si ) ·∑i =
P

i Æi p!§(si ) = p!. But since ∑i > 1 for all i , this cannot be the case.

Without any imperfections, V̂ (X |µ) = V (X |µ), which is convex in beliefs for any X and

µ. Intuitively, if a DM was offered some additional information experiment before observing

the result of X , this should only increase expected utility. With a bias and/or distortion, this

no longer holds. Such additional information can push a DM into a region where misjudging

information leads to (further) suboptimal choices and is thus potentially even more costly.

Information then has a strictly negative effect.

C.2 Interaction between biases and distortions

We first show that if there exists a beneficial moderation policy that improves on a bias in

prior, then there also exists a distortion that yields a strict improvement. In particular, a

distortion that induces the same beliefs as the actual but moderated experiment would lead

to the same choices after each perceived signal. Since both types of decision makers have

the same view on X d , this effectively ‘creates’ a sophisticated decision maker that responds

to their belief about the experiment in a way the moderator would want them to. If the

garbling is beneficial, so is this distortion.

Recall that V̂ (X d |p) is defined as the DM’s (actual) expected utility given their choices,

i.e., V̂ (X d |p) =V (X |â,µ), where â the DM’s choice given X d and p .

Result A.2. Suppose a DM has a biased prior p and there exists a garbling M such that

V (X M |a§,µ) >V (X |a§,µ), (12)

where a§ is the action profile consistent with V (X |p). Then for naive and sophisticated DMs,

there generically exists a distortion d such that

V̂ (X |p) < V̂ (X d |p). (13)

Proof. Inequality (12) implies that there exists a beneficial moderation policy for a naive

DM. It follows from Lemma 1 that there exist si , s j 2 SX such that E [u(ai |!)|µ(s j )] >
E [u(a j |!)|µ(s j )]. If V (X4(si , s j )|p) > max

©
E [u(a|!)|p] : a 2 {ai , a j }

™
, which given (12) is

generically true for a finite action set, there also exists a beneficial moderation policy for a

both naive and sophisticated DMs. Let M§ be the optimal moderation policy for a sophisti-

cated DM that results in an action profile â. Clearly, a distortion X d = X M§ does not violate

Bayes’ consistency and achieves the same choices as M§. Applying the same distortion to a

naive DM equally results in â and achieves the same outcome, since distortions affect both

types equally. This yields (13).
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We proceed by showing that in the case of complete disagreement over two actions, any

form of noise that affects the respective signals increases expected utility. This includes the

case of symmetric garbling (i.e., white noise). In other words, even if the moderator val-

ues the information from an experiment, in the sense that the moderator would condition

actions on the outcome, introducing white noise, as well as any other form of noise, can

be beneficial. For a naive DM, this is also true for any magnitude of the noise, while for a

sophisticated DM, this might only be the case up to the point where the DM adjusts their

actions (which could lower expected utility from the perspective of the moderator).

This also implies that, if a DM suffers from distortions and/or a bias in prior, a second

‘layer’ of mistakes that adds noise to the perception or recollection of signals (as, for in-

stance, in Rabin and Schrag (1999)), or the execution of choices, can be beneficial. For in-

stance, in the absence of a moderator, a bias in prior that causes complete disagreement

relative to the unbiased evaluation can be improved upon by a mistake that leads the DM

to swap the corresponding signals. In fact, for the case of complete disagreement, any such

(random) mistake acts as beneficial moderation. And a DM unaware of such errors might

be better-off than someone taking the noise into account.

Result A.3. Suppose given an experiment X , distortion d, and priors p andµ, the DM chooses

an action profile a and there is complete disagreement over some ai and a j . Then for all

Øi ,Ø j 2 (0,1], the moderation policy

m(si ) =Øi si + (1°Øi )s j

m(s j ) =Ø j s j + (1°Ø j )si

m(sl ) = sl 8l 2 {1, ...,k}; l 6= i , j ,

is such that V (X M |a,µ) >V (X |a,µ).

Proof. Complete disagreement implies that E
£
u(a j |!)|µ(si )

§
> E

£
u(ai |!)|µ(si )

§
and

E
£
u(ai |!)|µ(s j )

§
> E

£
u(a j |!)|µ(s j )

§
(Lemma 3). The result follows directly.
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